scholarly journals Growth of atmospheric nano-particles by heterogeneous nucleation of organic vapor

2013 ◽  
Vol 13 (13) ◽  
pp. 6523-6531 ◽  
Author(s):  
J. Wang ◽  
R. L. McGraw ◽  
C. Kuang

Abstract. Atmospheric aerosols play critical roles in air quality, public health, and visibility. In addition, they strongly influence climate by scattering solar radiation and by changing the reflectivity and lifetime of clouds. One major but still poorly understood source of atmospheric aerosols is new particle formation, which consists of the formation of thermodynamically stable clusters from trace gas molecules (homogeneous nucleation) followed by growth of these clusters to a detectable size (~3 nm). Because freshly nucleated clusters are most susceptible to loss due to high rate of coagulation with pre-existing aerosol population, the initial growth rate strongly influences the rate of new particle formation and ambient aerosol population. Whereas many field observations and modeling studies indicate that organics enhance the initial growth of the clusters and therefore new particle formation, thermodynamic considerations would suggest that the strong increase of equilibrium vapor concentration due to cluster surface curvature (Kelvin effect) may prevent ambient organics from condensing on these small clusters. Here, the contribution of organics to the initial cluster growth is described as heterogeneous nucleation of organic molecules onto these clusters. We find that the strong gradient in cluster population with respect to its size leads to positive cluster number flux. This positive flux drives the growth of clusters substantially smaller than the Kelvin diameter, conventionally considered the minimum particle size that can be grown through condensation. The conventional approach neglects the contribution from the cluster concentration gradient, and underestimates the cluster survival probabilities by a factor of up to 60 if early growth of clusters is due to both condensation of sulfuric acid and heterogeneous nucleation of organic vapors.

2012 ◽  
Vol 12 (9) ◽  
pp. 22813-22833 ◽  
Author(s):  
J. Wang ◽  
R. L. McGraw ◽  
C. Kuang

Abstract. Atmospheric aerosols play critical roles in air quality, public health, and visibility. In addition, they strongly influence climate by scattering solar radiation and by changing the reflectivity and lifetime of clouds. One major but still poorly understood source of atmospheric aerosol is new particle formation, which consists of the formation of thermodynamically stable clusters from trace gas molecules (homogeneous nucleation) followed by growth of these clusters to a detectable size (~3 nm). Because freshly nucleated clusters are most susceptible to loss due to high rate of coagulation with pre-existing aerosol population, the initial growth rate strongly influences the rate of new particle formation and ambient aerosol population. Whereas many field observations and modeling studies indicate that organics enhance the initial growth of the clusters and therefore new particle formation, thermodynamic considerations would suggest that the strong increase of equilibrium vapor concentration due to cluster surface curvature (Kelvin effect) may prevent ambient organics from condensing on these small clusters. Here the initial condensational growth of freshly nucleated clusters is described as heterogeneous nucleation of organic molecules onto these clusters. We find that the strong gradient in cluster population with respect to its size lead to positive cluster number flux, and therefore driving the growth of clusters substantially smaller than the Kelvin diameter, conventionally considered as the minimum particle size that can be grown through condensation. The conventional approach neglects this contribution from the cluster concentration gradient, and underestimates the rate of new particle formation by a factor of up to 60.


2021 ◽  
Vol 21 (3) ◽  
pp. 2287-2304
Author(s):  
Runlong Cai ◽  
Chenxi Li ◽  
Xu-Cheng He ◽  
Chenjuan Deng ◽  
Yiqun Lu ◽  
...  

Abstract. The growth rate of atmospheric new particles is a key parameter that determines their survival probability of becoming cloud condensation nuclei and hence their impact on the climate. There have been several methods to estimate the new particle growth rate. However, due to the impact of coagulation and measurement uncertainties, it is still challenging to estimate the initial growth rate of new particles, especially in polluted environments with high background aerosol concentrations. In this study, we explore the influences of coagulation on the appearance time method to estimate the growth rate of sub-3 nm particles. The principle of the appearance time method and the impacts of coagulation on the retrieved growth rate are clarified via derivations. New formulae in both discrete and continuous spaces are proposed to correct for the impacts of coagulation. Aerosol dynamic models are used to test the new formulae. New particle formation in urban Beijing is used to illustrate the importance of considering the impacts of coagulation on the sub-3 nm particle growth rate and its calculation. We show that the conventional appearance time method needs to be corrected when the impacts of coagulation sink, coagulation source, and particle coagulation growth are non-negligible compared to the condensation growth. Under the simulation conditions with a constant concentration of non-volatile vapors, the corrected growth rate agrees with the theoretical growth rates. However, the uncorrected parameters, e.g., vapor evaporation and the variation in vapor concentration, may impact the growth rate obtained with the appearance time method. Under the simulation conditions with a varying vapor concentration, the average bias in the corrected 1.5–3 nm particle growth rate ranges from 6 %–44 %, and the maximum bias in the size-dependent growth rate is 150 %. During the test new particle formation event in urban Beijing, the corrected condensation growth rate of sub-3 nm particles was in accordance with the growth rate contributed by sulfuric acid condensation, whereas the conventional appearance time method overestimated the condensation growth rate of 1.5 nm particles by 80 %.


2020 ◽  
Author(s):  
Runlong Cai ◽  
Chenxi Li ◽  
Xu-Cheng He ◽  
Chenjuan Deng ◽  
Yiqun Lu ◽  
...  

Abstract. The growth rate of atmospheric new particles is a key parameter that determines their survival probability to become cloud condensation nuclei and hence their impact on the climate. There have been several methods to estimate the new particle growth rate. However, due to the impact of coagulation and measurement uncertainties, it is still challenging to estimate the initial growth rate of sub-3 nm particles, especially in polluted environments with high background aerosol concentrations. In this study, we explore the feasibility of the appearance time method to estimate the growth rate of sub-3 nm particles. The principle of the appearance time method and the impacts of coagulation on the retrieved growth rate are clarified. New formulae in both discrete and continuous spaces are proposed to correct the impacts of coagulation. Aerosol dynamic models are used to test the new formulae. New particle formation in urban Beijing is used to illustrate the importance to consider the impacts of coagulation on sub-3 nm particle growth rate and its calculation. We show that the conventional appearance time method needs to be corrected when the impacts of coagulation sink, coagulation source, and particle coagulation growth are non-negligible compared to the condensation growth. Under the simulation conditions with a constant vapor concentration, the corrected growth rate agrees with the theoretical growth rates. The variation of vapor concentration is found to impact growth rate obtained with the appearance time method. Under the simulation conditions with a varying vapor concentration, the average bias of the corrected 1.5–3 nm particle growth rate range from 6–44 %. During the test new particle formation event in urban Beijing, the corrected condensation growth rate of sub-3 nm particles was in accordance with the growth rate contributed by sulfuric acid condensation, whereas the conventional appearance time method overestimated the condensation growth rate of 1.5 nm particles by 80 %.


Author(s):  
Jiarong Liu ◽  
Ling Liu ◽  
Hui Rong ◽  
Xiuhui Zhang

Amino acids are recognized as significant components of atmospheric aerosols. However, its potential role in the atmospheric new particle formation (NPF) is poorly understood, especially aspartic acid (ASP), one of...


2020 ◽  
Author(s):  
Mario Simon ◽  
Lubna Dada ◽  
Martin Heinritzi ◽  
Wiebke Scholz ◽  
Dominik Stolzenburg ◽  
...  

Abstract. Highly-oxygenated organic molecules (HOMs) contribute substantially to the formation and growth of atmospheric aerosol particles, which affect air quality, human health and Earth's climate. HOMs are formed by rapid, gas-phase autoxidation of volatile organic compounds (VOCs) such as α-pinene, the most abundant monoterpene in the atmosphere. Due to their abundance and low volatility, HOMs can play an important role for new-particle formation (NPF) and the early growth of atmospheric aerosols, even without any further assistance of other low-volatility compounds such as sulfuric acid. Both the autoxidation reaction forming HOMs and their new-particle formation rates are expected to be strongly dependent on temperature. However, experimental data on both effects are limited. Dedicated experiments were performed at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN to address this question. In this study, we show that a decrease in temperature (from +25 to −50 °C) results in a reduced HOM yield and reduced oxidation state of the products, whereas the new-particle formation rates (J1.7 nm) increase substantially. Measurements with two different chemical ionization mass spectrometers (using nitrate and protonated water as reagent ion, respectively) provide the molecular composition of the gaseous oxidation products and a 2-dimensional volatility basis set model (2D-VBS) provides their volatility distribution. The HOM yield decreases with temperature from 6.2 % at 25 °C to 0.7 % at −50 °C. However, there is a strong reduction of the saturation vapor pressure of each oxidation state as the temperature is reduced. Overall, the reduction in volatility with temperature leads to an increase in the nucleation rates by up to three orders of magnitude at −50 °C compared with 25 °C. In addition, the enhancement of the nucleation rates by ions decreases with decreasing temperature, since the neutral molecular clusters have increased stability against evaporation. The resulting data quantify how the interplay between the temperature-dependent oxidation pathways and the associated vapor pressures affect biogenic new-particle formation at the molecular level. Our measurements therefore improve our understanding of pure biogenic new-particle formation for a wide range of tropospheric temperatures and precursor concentrations.


2019 ◽  
Author(s):  
Hing Cho Cheung ◽  
Charles C.-K. Chou ◽  
Celine S. L. Lee ◽  
Wei-Chen Kuo ◽  
Shuenn-Chin Chang

Abstract. The chemical composition of fine particulate matters (PM2.5), the size distribution and number concentration of aerosol particles (NCN) and the number concentration of cloud condensation nuclei (NCCN) were measured at the northern tip of Taiwan Island during a campaign from April 2017 to March 2018. The parameters of aerosol hygroscopicity (i.e. activation ratio, activation diameter and kappa) were retrieved from the measurements. Significant variations were found in the hygroscopicity of aerosols, which were suggested be subject to various pollution sources, including aged air pollutants originating in the eastern/northern China and transported on the Asian continental outflows, fresh particles emitted from local sources and distributed by land-sea breeze circulations as well as produced by new particle formation (NPF) processes. Cluster analysis was applied to the backward trajectories of air masses to investigate their respective source regions. The results showed that the aerosols associated with Asian continental outflows were characterized with higher kappa values, whereas higher NCCN and NCN with lower kappa values were found for aerosols in local air masses. The distinct features in hygroscopicity were consistent with the characteristics in the chemical composition of PM2.5. Moreover, this study revealed that the nucleation mode particles from NPF could have participated in the enhancement of CCN activity, most likely by coagulating with sub-CCN particles, although the freshly produced particles were not favored for CCN activation due to their smaller sizes. Thus, the results of this study suggested that the NPF coupling with coagulation processes can significantly increase the NCCN in atmosphere.


2019 ◽  
Author(s):  
Sophia Brilke ◽  
Nikolaus Fölker ◽  
Thomas Müller ◽  
Konrad Kandler ◽  
Xianda Gong ◽  
...  

Abstract. Atmospheric particle size distributions were measured in Paphos, Cyprus, during the A-LIFE (Absorbing aerosol layers in a changing climate: aging, lifetime and dynamics) field experiment from April 3–30, 2017. The newly developed DMA-train is deployed for the first time in an atmospheric environment for the direct measurement of the nucleation mode size range between 1.8–10 nm diameter. The DMA-train setup consists of seven size channels, of which five are set to fixed particle mobility diameters and two additional diameters are obtained by alternating voltage settings in one DMA every 10 s. In combination with a conventional Mobility Particle Size Spectrometer (MPSS) and an Aerodynamic Particle Sizer (APS) the complete atmospheric aerosol size distribution from 1.8 nm–10 µm is covered. The focus of the A-LIFE study is to characterize new particle formation (NPF) in the Eastern Mediterranean region at a measurement site with strong local pollution sources. The nearby Paphos airport was found to be a large emission source for nucleation mode particles and we analysed the size distribution of the airport emission plumes at approximately 500 m from the main runway. The analysis yielded 9 NPF events in 27 measurement days from the combined analysis of the DMA-train, MPSS and trace gas monitors. Growth rate calculations were performed and a size-dependency of the initial growth rate (


2006 ◽  
Vol 6 (5) ◽  
pp. 10403-10424
Author(s):  
M. Ehn ◽  
T. Petäjä ◽  
W. Birmili ◽  
H. Junninen ◽  
P. Aalto ◽  
...  

Abstract. The volatility of sub-micrometer atmospheric aerosol particles was studied in a rural background environment in Finland using a combination of a heating tube and a scanning mobility particle sizer. The analysis focused on nano-particles formed from nucleation bursts which were subsequently observed during their growth in the diameter range between 5 and 60 nm. During the 6 days of new particle formation shown in detail, the concentrations of newly formed particles increased up to 10 000 cm−3. The number of nucleation mode particles measured after volatilization in the heating tube at 280°C was up to 90% of the total number under ambient conditions. Taking into account the absolute accuracy of the size distribution measurements, all ambient particles found in the rural atmosphere could have a non-volatile core after volatilization at 280°C. As the regional new particle formation events developed over time as a result of further vapor condensation, the newly formed particles grew at an average growth rate of 2.4±0.3 nm h−1. Importantly, the non-volatile cores of nucleation mode particles were also observed to grow over time, however, at a lower average growth rate of 0.6±0.3 nm h−1. One implication of the volatility analysis is that the newly formed particles, which have reached ambient diameters of 15 nm, are unlikely to consist of sulfuric acid, ammonium sulfate, and water alone. A relatively constant ratio between the growth rate of the ambient particles as well as their non-volatile cores indicates that non-volatile matter is formed only gradually in the growing particles. The non-volatile fraction of the particles showed some correlation with the ambient temperature. The composition and formation mechanism of this non-volatile material in nucleation mode particles are, to date, not known.


2020 ◽  
Author(s):  
Juan Andrés Casquero-Vera ◽  
Hassan Lyamani ◽  
Lubna Dada ◽  
Simo Hakala ◽  
Pauli Paasonen ◽  
...  

Abstract. A substantial fraction of the atmospheric aerosols originates from secondary new particle formation (NPF), where atmospheric vapours are transformed into particles that subsequently grow to larger sizes, affecting human health and the climate. In this study, we investigate aerosol size distributions at two stations located close to each other (~ 20 km), but at different altitudes: urban (UGR; 680 m a.s.l.) and high-altitude remote (SNS; 2500 m a.s.l.) site, both in the area of Granada, Spain, and part of AGORA observatory (Andalusian Global ObseRvatory of the Atmosphere). The analysis shows a significant contribution of nucleation mode aerosol particles to the total aerosol number concentration at both sites, with a contribution of 47 % and 48 % at SNS and UGR, respectively. Due to the important contribution of NPF events to the total aerosol number concentrations and their high occurrence frequency (> 70 %) during the study period, a detailed analysis of NPF events is done in order to get insight into the possible mechanisms and processes involved in NPF events at these contrastive sites. At SNS, NPF is found to be associated with the transport of gaseous precursors from lower altitudes by orographic buoyant upward flows. However, NPF events at SNS site are always observed from the smallest measured sizes of the aerosol size distribution (4 nm), implying that NPF takes place in or in the vicinity of the high-altitude SNS station rather than transported from lower altitudes. Although NPF events at the mountain site seem to be connected with those occurring at the urban site, growth rates (GR) at SNS are higher than those at UGR site (GR7–25 of 6.9 and 4.5 nm h−1 and GR4–7 of 4.1 and 3.6 nm h−1 at SNS and UGR, respectively). This fact could have a special importance on the production of cloud condensation nuclei (CCN) and therefore on cloud formations which may affect regional/global climate, since larger GR at mountain sites could be translated to larger survival probability of NPF particles to reach CCN sizes, due to shorter time needed for the growth. The analysis of sulfuric acid (H2SO4) shows that the contribution of H2SO4 is able to explain a minimal fraction contribution to the observed GRs at both sites (


Sign in / Sign up

Export Citation Format

Share Document