scholarly journals The decreasing albedo of the Zhadang glacier on western Nyainqentanglha and the role of light-absorbing impurities

2014 ◽  
Vol 14 (20) ◽  
pp. 11117-11128 ◽  
Author(s):  
B. Qu ◽  
J. Ming ◽  
S.-C. Kang ◽  
G.-S. Zhang ◽  
Y.-W. Li ◽  
...  

Abstract. A large change in albedo has a significant effect on glacier ablation. Atmospheric aerosols – e.g. black carbon (BC) and dust – can reduce the albedo of glaciers and thus contribute to their melting. In this study, two main themes were explored: (1) the decrease in albedo of the Zhadang glacier on Mt. Nyainqentanglha between 2001 and 2012, as observed by the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board the Terra satellite, and the correlation of this albedo with mass balance; and (2) the concentrations of BC and dust in the glacier measured during 2012, and the associated impacts of these impurities on albedo and radiative forcings (RF). The average albedo of the Zhadang glacier from the MODIS increased with the altitude and fluctuated but had a decreasing trend (−0.003 a−1) during the period 2001–2012, with the highest (0.722) in 2003 and the lowest (0.597) in 2009 and 2010. The mass balance of the glacier has a positively significant correlation with its surface albedo derived from MODIS. Snow samples were collected on the Zhadang glacier to measure the BC and dust in the summer of 2012. The impacts of BC and dust on albedo reduction in different melting conditions were identified with the SNow ICe Aerosol Radiative (SNICAR) model initiated by in situ observation data. The sensitivity analysis showed that BC was a major factor in albedo reduction when the glacier was covered by newly fallen snow. Nevertheless, the contribution of dust to albedo reduction can reach as high as 56%, much exceeding that of BC (28%), when the glacier experiences strong surficial melting and its surface is almost bare ice. The average RF caused by dust could increase from 1.1 to 8.6 W m−2, exceeding the RF caused by BC after snow was deposited and surface melting occurred in the Zhadang glacier. This implies that it may be dust that primarily dominates the melting of some glaciers in the inner Tibetan Plateau during melting seasons, rather than BC.

2014 ◽  
Vol 14 (9) ◽  
pp. 13109-13131 ◽  
Author(s):  
B. Qu ◽  
J. Ming ◽  
S.-C. Kang ◽  
G.-S. Zhang ◽  
Y.-W. Li ◽  
...  

Abstract. The large change in albedo has a great effect on glacier ablation. Atmospheric aerosols (e.g. black carbon (BC) and dust) can reduce the albedo of glaciers and thus contribute to their melting. In this study, we investigated the measured albedo as well as the relationship between albedo and mass balance in Zhadang glacier on Mt. Nyanqentanglha associated with MODIS (10A1) data. The impacts of BC and dust in albedo reduction in different melting conditions were identified with SNow ICe Aerosol Radiative (SNICAR) model and in-situ data. It was founded that the mass balance of the glacier has a significant correlation with its surface albedo derived from Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra satellite. The average albedo of Zhadang glacier from MODIS increased with the altitude and fluctuated but overall had a decreasing trend during 2001–2010, with the highest (0.722) in 2003 and the lowest (0.597) in 2009 and 2010, respectively. The sensitivity analysis via SNICAR showed that BC was a major factor in albedo reduction when the glacier was covered by newly fallen snow. Nevertheless, the contribution of dust to albedo reduction can be as high as 58% when the glacier experienced strong surficial melting that the surface was almost bare ice. And the average radiative forcing (RF) caused by dust could increase from 1.1 to 8.6 W m−2 exceeding the forcings caused by BC after snow was deposited and surface melting occurred in Zhadang glacier. This suggest that it may be dust rather than BC, dominating the melting of some glaciers in the TP during melting seasons.


1969 ◽  
Vol 31 ◽  
pp. 91-94
Author(s):  
William Colgan ◽  
Jason E. Box ◽  
Robert S. Fausto ◽  
Dirk Van As ◽  
Valentina R. Barletta ◽  
...  

Satellite observations are critical to understanding the mass balance of Greenland’s terrestrial ice (Fig. 1). The Gravity Recovery and Climate Experiment (GRACE) satellite constellation provides monthly gravimetry observations that can directly assess mass balance. Temporal data gaps have begun to appear in the GRACE record due to declining satellite function. In anticipation of further deterioration in the coverage of GRACE, we have explored an empirical relation between ice-surface albedo (or reflectance) and ice-mass balance to fill the gaps in the gravimetry record of Greenland’s ice-mass balance. As surface albedo observed by the moderate-resolution imaging spectroradiometer (MODIS) aboard the Terra satellite is available in near real-time, employing a MODISderived proxy permits near real-time estimates of Greenland ice-mass balance. The Geological Survey of Denmark and Greenland has begun employing the albedo – mass-balance relation described here to issue near real-time estimates of Greenland ice-mass balance during the summer melt season at www.polarportal.org.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 529
Author(s):  
Ashok Kumar Pokharel ◽  
Tianli Xu ◽  
Xiaobo Liu ◽  
Binod Dawadi

It has been revealed from the Modern-Era Retrospective analysis for Research and Applications MERRA analyses, Moderate Resolution Imaging Spectroradiometer MODIS/Terra satellite imageries, Naval Aerosol Analysis and Prediction System NAAPS model outputs, Cloud –Aerosol Lidar and Infrared Pathfinder Satellite Observations CALIPSO imageries, Hybrid Single Particle Lagrangian Integrated Trajectory HYSPLIT model trajectories, atmospheric soundings, and observational records of dust emission that there were multiple dust storms in the far western parts of India from 12 to 15 June 2018 due to thunderstorms. This led to the lifting of the dust from the surface. The entry of dust into the upper air was caused by the generation of a significant amount of turbulent kinetic energy as a function of strong wind shear generated by the negative buoyancy of the cooled air aloft and the convective buoyancy in the lower planetary boundary layer. Elevated dust reached a significant vertical height and was advected towards the northern/northwestern/northeastern parts of India. In the meantime, this dust was carried by northwesterly winds associated with the jets in the upper level, which advected dust towards the skies over Nepal where rainfall was occurring at that time. Consequently, this led to the muddy rain in Nepal.


2005 ◽  
Vol 22 (4) ◽  
pp. 338-351 ◽  
Author(s):  
Norman G. Loeb ◽  
Seiji Kato ◽  
Konstantin Loukachine ◽  
Natividad Manalo-Smith

Abstract The Clouds and Earth’s Radiant Energy System (CERES) provides coincident global cloud and aerosol properties together with reflected solar, emitted terrestrial longwave, and infrared window radiative fluxes. These data are needed to improve the understanding and modeling of the interaction between clouds, aerosols, and radiation at the top of the atmosphere, surface, and within the atmosphere. This paper describes the approach used to estimate top-of-atmosphere (TOA) radiative fluxes from instantaneous CERES radiance measurements on the Terra satellite. A key component involves the development of empirical angular distribution models (ADMs) that account for the angular dependence of the earth’s radiation field at the TOA. The CERES Terra ADMs are developed using 24 months of CERES radiances, coincident cloud and aerosol retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS), and meteorological parameters from the Global Modeling and Assimilation Office (GMAO)’s Goddard Earth Observing System (GEOS) Data Assimilation System (DAS) V4.0.3 product. Scene information for the ADMs is from MODIS retrievals and GEOS DAS V4.0.3 properties over the ocean, land, desert, and snow for both clear and cloudy conditions. Because the CERES Terra ADMs are global, and far more CERES data are available on Terra than were available from CERES on the Tropical Rainfall Measuring Mission (TRMM), the methodology used to define CERES Terra ADMs is different in many respects from that used to develop CERES TRMM ADMs, particularly over snow/sea ice, under cloudy conditions, and for clear scenes over land and desert.


Geosciences ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 362
Author(s):  
Jihui Yuan

Currently, global climate change (GCC) and the urban heat island (UHI) phenomena are becoming serious problems, partly due to the artificial construction of the land surface. When sunlight reaches the land surface, some of it is absorbed and some is reflected. The state of the land surface directly affects the surface albedo, which determines the magnitude of solar radiation reflected by the land surface in the daytime. In order to better understand the spatial and temporal changes in surface albedo, this study investigated and analyzed the surface albedo from 2000 to 2016 (2000, 2008, and 2016) in the entire Chinese territory, based on the measurement database obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, aboard NASA’s Terra satellite. It was shown that the Northeast China exhibited the largest decline in surface albedo and North China showed the largest rising trend of surface albedo from 2000 to 2016. The correlation between changes in surface albedo and the Normalized Difference Vegetation Index (NDVI) indicated that the change trend of surface albedo was opposite to that of NDVI. In addition, in order to better understand the distribution of surface albedo in the entire Chinese territory, the classifications of surface albedo in three years (2000, 2008, and 2016) were implemented using five classification methods in this study.


2011 ◽  
Vol 20 (3) ◽  
pp. 465 ◽  
Author(s):  
M. M. Bisquert ◽  
J. M. Sánchez ◽  
V. Caselles

Galicia, in north-west Spain, is a region especially affected by devastating forest fires. The development of a fire danger prediction model adapted to this particular region is required. In this paper, we focus on changes in the condition of vegetation as an indicator of fire danger. The potential of the Enhanced Vegetation Index (EVI) together with period-of-year to monitor vegetation changes in Galicia is shown. The Moderate Resolution Imaging Spectroradiometer (MODIS), onboard the Terra satellite, was chosen for this study. A 6-year dataset of EVI images, from the product MOD13Q1 (16-day composites), together with fire data in a 10 × 10-km grid basis, were used. Logistic regression was used to assess the relationship between the percentage of fire activity and EVI variations together with period-of-year. The results show the ability of the model obtained to discriminate different levels of fire occurrence danger, with an estimation error of ~5%. This remote sensing technique may contribute to improving the efficiency of the currently used fire prevention systems.


2019 ◽  
Vol 29 (2) ◽  
Author(s):  
Joseph A. Adesina ◽  
Stuart J. Piketh ◽  
Paola Formenti ◽  
Gillian Maggs-Kölling ◽  
Brent N. Holben ◽  
...  

Atmospheric aerosols contribute significantly to the uncertainty in radiative forcing effects that influence the climate and pose a significant health risk to humans.   The climatic implications of aerosols are dependent on many variables, including aerosol size, shape, chemical composition, and position in the atmospheric column. The radiative impact of aerosols transported over the west coast of southern Africa has been found, in particular, to be complicated by the aforementioned aerosol properties.  This study investigated the columnar optical properties of aerosols over Gobabeb, Namibia (23.56oS, 15.04oE, 400 m asl) using sunphotometer data between December 2014 and November 2015. Aerosol mean optical depth AOD500 had its maximum and minimum values in 2015 August (0.37±0.30) and June (0.06±0.02), respectively. The Angström parameter was mostly above unity during the study period and indicated the prevalence of fine particles for the most part of the year with maximum and minimum values observed in August 2015 (1.44±0.19) and December 2014 (0.57±0.19), respectively. The columnar water vapor was highest in January (2.62±0.79) and lowest in June (0.76±0.27). The volume size distribution showed the fine particles having a mean radius of about 0.16 μm and the coarse mode had variation in sizes with a radius ranging between 3 μm and 7 μm. The single scattering albedo at visible wavelengths ranged between 0.87 and 0.88. The phase function was high at small angles but minimum at about 140o in all seasons. The radiative forcing showed a heating effect in all seasons with maximum and minimum in winter (9.41 Wm-2) and autumn (3.64 Wm-2), respectively. Intercomparison of the sunphotometer data with the Moderate Resolution Imaging Spectroradiometer (MODIS) showed that the satellite sensor overestimates the aerosol loading compared to the ground-based sunphotometer measurements. Both sets of observations were better correlated during the spring and winter seasons than for summer and autumn.


2021 ◽  
Vol 13 (16) ◽  
pp. 3248
Author(s):  
Umesh Chandra Dumka ◽  
Panagiotis G. Kosmopoulos ◽  
Shantikumar S. Ningombam ◽  
Akriti Masoom

We examine the impact of atmospheric aerosols and clouds on the surface solar radiation and solar energy at Nainital, a high-altitude remote location in the central Gangetic Himalayan region (CGHR). For this purpose, we exploited the synergy of remote-sensed data in terms of ground-based AERONET Sun Photometer and satellite observations from the MODerate Resolution Imaging Spectroradiometer (MODIS) and the Meteosat Second Generation (MSG), with radiative transfer model (RTM) simulations and 1 day forecasts from the Copernicus Atmosphere Monitoring Service (CAMS). Clouds and aerosols are one of the most common sources of solar irradiance attenuation and hence causing performance issues in the photovoltaic (PV) and concentrated solar power (CSP) plant installations. The outputs of RTM results presented with high accuracy under clear, cloudy sky and dust conditions for global horizontal (GHI) and beam horizontal irradiance (BHI). On an annual basis the total aerosol attenuation was found to be up to 105 kWh m−2 for the GHI and 266 kWh m−2 for BHI, respectively, while the cloud effect is much stronger with an attenuation of 245 and 271 kWh m−2 on GHI and BHI. The results of this study will support the Indian solar energy producers and electricity handling entities in order to quantify the energy and financial losses due to cloud and aerosol presence.


2015 ◽  
Vol 8 (3) ◽  
pp. 2521-2554 ◽  
Author(s):  
J. A. Limbacher ◽  
R. A. Kahn

Abstract. We diagnose the potential causes for the Multi-angle Imaging SpectroRadiometer's (MISR) persistent high aerosol optical depth (AOD) bias at low AOD with the aid of coincident MODerate-resolution Imaging Spectroradiometer (MODIS) imagery from NASA's Terra satellite. Internal reflections within the MISR instrument are responsible for a large portion of the high AOD bias in high-contrast scenes, which are especially common as broken-cloud situations over ocean. Discrepancies between MODIS and MISR nadir-viewing near-infrared (NIR) images are used to optimize nine parameters, along with a background reflectance modulation term (that was modeled separately), to represent the observed features. Independent, surface-based AOD measurements from the AErosol RObotic NETwork (AERONET) and the Marine Aerosol Network (MAN) are compared with MISR Research Algorithm (RA) AOD retrievals for 1118 coincidences to validate the corrections when applied to the nadir and off-nadir cameras. Additionally, the calibration coefficients for the red and NIR channels used for MISR over-water aerosol retrievals were reassessed with the RA to be consistent on a camera-by-camera basis. With these corrections, plus the baseline RA corrections applied (except enhanced cloud screening), the median AOD bias in the mid-visible (green) band decreases from 0.010 to 0.002, the RMSE decreases by ~ 10%, and the slope and correlation of the MISR vs. sun photometer Ångström Exponent improves. For AOD558 nm < 0.10 and with additional cloud screening, the median bias for the RA-retrieved AOD in the green band decreases from 0.011 to 0.003, compared to ~ 0.023 for the Standard Algorithm (SA). RMSE decreases by ~ 20% compared to the baseline (uncorrected) RA and by 17–53% compared to the SA. After all corrections and cloud screening are implemented, for AOD558 nm < 0.10, which includes about half the validation data, 68% absolute AOD errors for the RA have dropped to < 0.02 (~ 0.018).


2019 ◽  
Vol 11 (11) ◽  
pp. 1315
Author(s):  
Ning Lu

Monthly atmospheric precipitable water (PW) from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite was assessed over land at 60°S–60°N. MODIS provides two PW products by using infrared (IR) and near-IR (NIR) algorithms, respectively. An assessment was performed for both MODIS PW data from 2000 to 2014, comparing them with the measurements at international stations of the global positioning systems and with a reanalysis to detect abrupt changes through monthly variations. It is noted that MODIS IR systematically underestimated PW in over 75% of stations, and that PW estimation declines with time. MODIS NIR significantly overestimated PW for tropical land and experienced two abrupt shifts. These data defects result in large spurious decreasing trends in MODIS IR and increasing trends in MODIS NIR. The two MODIS PW products are currently not suitable for a climatic-trend analysis, highlighting the need for data reprocessing and calibration.


Sign in / Sign up

Export Citation Format

Share Document