scholarly journals Enhancing non-refractory aerosol apportionment from an urban industrial site through receptor modeling of complete high time-resolution aerosol mass spectra

2014 ◽  
Vol 14 (15) ◽  
pp. 8017-8042 ◽  
Author(s):  
M. L. McGuire ◽  
R. Y.-W. Chang ◽  
J. G. Slowik ◽  
C.-H. Jeong ◽  
R. M. Healy ◽  
...  

Abstract. Receptor modeling was performed on quadrupole unit mass resolution aerosol mass spectrometer (Q-AMS) sub-micron particulate matter (PM) chemical speciation measurements from Windsor, Ontario, an industrial city situated across the Detroit River from Detroit, Michigan. Aerosol and trace gas measurements were collected on board Environment Canada's Canadian Regional and Urban Investigation System for Environmental Research (CRUISER) mobile laboratory. Positive matrix factorization (PMF) was performed on the AMS full particle-phase mass spectrum (PMFFull MS) encompassing both organic and inorganic components. This approach compared to the more common method of analyzing only the organic mass spectra (PMFOrg MS). PMF of the full mass spectrum revealed that variability in the non-refractory sub-micron aerosol concentration and composition was best explained by six factors: an amine-containing factor (Amine); an ammonium sulfate- and oxygenated organic aerosol-containing factor (Sulfate-OA); an ammonium nitrate- and oxygenated organic aerosol-containing factor (Nitrate-OA); an ammonium chloride-containing factor (Chloride); a hydrocarbon-like organic aerosol (HOA) factor; and a moderately oxygenated organic aerosol factor (OOA). PMF of the organic mass spectrum revealed three factors of similar composition to some of those revealed through PMFFull MS: Amine, HOA and OOA. Including both the inorganic and organic mass proved to be a beneficial approach to analyzing the unit mass resolution AMS data for several reasons. First, it provided a method for potentially calculating more accurate sub-micron PM mass concentrations, particularly when unusual factors are present, in this case the Amine factor. As this method does not rely on a priori knowledge of chemical species, it circumvents the need for any adjustments to the traditional AMS species fragmentation patterns to account for atypical species, and can thus lead to more complete factor profiles. It is expected that this method would be even more useful for HR–ToF–AMS data, due to the ability to understand better the chemical nature of atypical factors from high-resolution mass spectra. Second, utilizing PMF to extract factors containing inorganic species allowed for the determination of the extent of neutralization, which could have implications for aerosol parameterization. Third, subtler differences in organic aerosol components were resolved through the incorporation of inorganic mass into the PMF matrix. The additional temporal features provided by the inorganic aerosol components allowed for the resolution of more types of oxygenated organic aerosol than could be reliably resolved from PMF of organics alone. Comparison of findings from the PMFFull MS and PMFOrg MS methods showed that for the Windsor airshed, the PMFFull MS method enabled additional conclusions to be drawn in terms of aerosol sources and chemical processes. While performing PMFOrg MS can provide important distinctions between types of organic aerosol, it is shown that including inorganic species in the PMF analysis can permit further apportionment of organics for unit mass resolution AMS mass spectra.

2014 ◽  
Vol 14 (4) ◽  
pp. 5081-5145 ◽  
Author(s):  
M. L. McGuire ◽  
R. Y.-W. Chang ◽  
J. G. Slowik ◽  
C.-H. Jeong ◽  
R. M. Healy ◽  
...  

Abstract. Receptor modelling was performed on quadrupole unit mass resolution aerosol mass spectrometer (Q-AMS) sub-micron particulate matter (PM) chemical speciation measurements from Windsor, Ontario, an industrial city situated across the Detroit River from Detroit, Michigan. Aerosol and trace gas measurements were collected on board Environment Canada's CRUISER mobile laboratory. Positive matrix factorization (PMF) was performed on the AMS full particle-phase mass spectrum (PMFFull MS) encompassing both organic and inorganic components. This approach was compared to the more common method of analysing only the organic mass spectra (PMFOrg MS). PMF of the full mass spectrum revealed that variability in the non-refractory sub-micron aerosol concentration and composition was best explained by six factors: an amine-containing factor (Amine); an ammonium sulphate and oxygenated organic aerosol containing factor (Sulphate-OA); an ammonium nitrate and oxygenated organic aerosol containing factor (Nitrate-OA); an ammonium chloride containing factor (Chloride); a hydrocarbon-like organic aerosol (HOA) factor; and a moderately oxygenated organic aerosol factor (OOA). PMF of the organic mass spectrum revealed three factors of similar composition to some of those revealed through PMFFull MS: Amine, HOA and OOA. Including both the inorganic and organic mass proved to be a beneficial approach to analysing the unit mass resolution AMS data for several reasons. First, it provided a method for potentially calculating more accurate sub-micron PM mass concentrations, particularly when unusual factors are present, in this case, an Amine factor. As this method does not rely on a priori knowledge of chemical species, it circumvents the need for any adjustments to the traditional AMS species fragmentation patterns to account for atypical species, and can thus lead to more complete factor profiles. It is expected that this method would be even more useful for HR-ToF-AMS data, due to the ability to better understand the chemical nature of atypical factors from high resolution mass spectra. Second, utilizing PMF to extract factors containing inorganic species allowed for the determination of extent of neutralization, which could have implications for aerosol parameterization. Third, subtler differences in organic aerosol components were resolved through the incorporation of inorganic mass into the PMF matrix. The additional temporal features provided by the inorganic aerosol components allowed for the resolution of more types of oxygenated organic aerosol than could be reliably resolved from PMF of organics alone. Comparison of findings from the PMFFull MS and PMFOrg MS methods showed that for the Windsor airshed, the PMFFull MS method enabled additional conclusions to be drawn in terms of aerosol sources and chemical processes. While performing PMFOrg MS can provide important distinctions between types of organic aerosol, it is shown that including inorganic species in the PMF analysis can permit further apportionment of organics for unit mass resolution AMS mass spectra.


2013 ◽  
Vol 13 (13) ◽  
pp. 6493-6506 ◽  
Author(s):  
L. Pfaffenberger ◽  
P. Barmet ◽  
J. G. Slowik ◽  
A. P. Praplan ◽  
J. Dommen ◽  
...  

Abstract. A series of smog chamber (SC) experiments was conducted to identify factors responsible for the discrepancy between ambient and SC aerosol degree of oxygenation. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer is used to compare mass spectra from α-pinene photooxidation with ambient aerosol. Composition is compared in terms of the fraction of particulate CO2+, a surrogate for carboxylic acids, vs. the fraction of C2H3O+, a surrogate for aldehydes, alcohols and ketones, as well as in the Van Krevelen space, where the evolution of the atomic hydrogen-to-carbon ratio (H : C) vs. the atomic oxygen-to-carbon ratio (O : C) is investigated. Low (near-ambient) organic mass concentrations were found to be necessary to obtain oxygenation levels similar to those of low-volatility oxygenated organic aerosol (LV-OOA) commonly identified in ambient measurements. The effects of organic mass loading and OH (hydroxyl radical) exposure were decoupled by inter-experiment comparisons at the same integrated OH concentration. An OH exposure between 3 and 25 × 107 cm−3 h is needed to increase O : C by 0.05 during aerosol aging. For the first time, LV-OOA-like aerosol from the abundant biogenic precursor α-pinene was produced in a smog chamber by oxidation at typical atmospheric OH concentrations. Significant correlation between measured secondary organic aerosol (SOA) and reference LV-OOA mass spectra is shown by Pearson's R2 values larger than 0.90 for experiments with low organic mass concentrations between 1.2 and 18 μg m−3 at an OH exposure of 4 × 107 cm−3 h, corresponding to about two days of oxidation time in the atmosphere, based on a global mean OH concentration of ~ 1 × 106 cm−3. α-Pinene SOA is more oxygenated at low organic mass loadings. Because the degree of oxygenation influences the chemical, volatility and hygroscopic properties of ambient aerosol, smog chamber studies must be performed at near-ambient concentrations to accurately simulate ambient aerosol properties.


2016 ◽  
Author(s):  
Cheol-Heon Jeong ◽  
Jon M. Wang ◽  
Greg J. Evans

Abstract. Source apportionment analysis of hourly resolved particulate matter (PM) speciation data was performed using positive matrix factorization (PMF). The data were measured at an urban site in downtown Toronto, Canada during two campaign periods (April–July, 2013; November, 2013–February, 2014), and included trace metals, black carbon, and mass spectra for organic and inorganic species (PMFFull). The chemical composition was measured by collocated high time resolution instrumentation, including an Aerosol Chemical Speciation Monitor, an Xact metals monitor, and a seven-wavelength Aethalometer. Separate PMF analyses were conducted using the trace metal only data (PMFmetal) and organic mass spectra only (PMForg), and compared with the PMFFull results. Comparison of these three PMF analyses demonstrated that the full analysis offered many advantages in the apportionment of local and regional sources compared to using the organic or metals data individually. In combining the high time resolution data, this analysis enabled i) the quantification of metal-rich sources of PM2.5 (PM < 2.5 μm), ii) the resolution of more robust factor profiles and contributions, and iii) the identification of additional organic aerosol sources. Nine factors were identified through the PMFFull analysis: five local factors (i.e. Road Dust, Primary Vehicle Emissions, Tire Wear, Cooking, and Industrial Sector) and four regional factors (i.e. Biomass Burning, Oxidised Organics, Sulphate and Oxidised Organics, and Nitrate and Oxidised Organics). The majority of the metal emissions (83 %) and almost half of the black carbon (49 %) were associated with the three traffic-related factors which, on average, contributed a minority (17 %) of the overall PM2.5 mass. Strong seasonal patterns were observed for the traffic-related emissions: higher contributions of resuspended road dust in spring vs. a winter high for tire wear related emissions. Biomass Burning contributed the majority of the PM2.5 mass (52 %) in June and July due to a major forest fire event. Much of this mass was due to photochemical aging of the biomass burning aerosol. On average, industrially related factors contributed almost half (49 %) of the PM2.5; most of this mass was secondary aerosol species. Nitrate coupled with highly oxidised organics was the largest contributor, accounting for 30 % of PM2.5 on average, with higher levels in winter and at night. Including the temporal variabilities of inorganic ions and trace metals in the PMFFull analysis provided additional structure to subdivide the low volatility oxidised organic aerosol into three sources. Resuspended road dust was identified as a potential source of aged organic aerosol. The novelty of this study is the application of PMF receptor modeling to hourly resolved trace metals in conjunction with organic mass spectra, inorganic species, and black carbon for different seasons, and the comparison of separate PMF analyses applied to metals or organics alone. The inclusion of these different types of hourly data allowed more robust apportionment of PM sources, as compared to analysing organic or metals data individually.


2012 ◽  
Vol 12 (18) ◽  
pp. 8537-8551 ◽  
Author(s):  
Y. L. Sun ◽  
Q. Zhang ◽  
J. J. Schwab ◽  
T. Yang ◽  
N. L. Ng ◽  
...  

Abstract. Positive matrix factorization (PMF) was applied to the merged high resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer (AMS) measurements to investigate the sources and evolution processes of submicron aerosols in New York City in summer 2009. This new approach is able to study the distribution of organic and inorganic species in different types of aerosols, the acidity of organic aerosol (OA) factors, and the fragment ion patterns related to photochemical processing. In this study, PMF analysis of the unified AMS spectral matrix resolved 8 factors. The hydrocarbon-like OA (HOA) and cooking OA (COA) factors contain negligible amounts of inorganic species. The two factors that are primarily ammonium sulfate (SO4-OA) and ammonium nitrate (NO3-OA), respectively, are overall neutralized. Among all OA factors the organic fraction of SO4-OA shows the highest degree of oxidation (O/C = 0.69). Two semi-volatile oxygenated OA (OOA) factors, i.e., a less oxidized (LO-OOA) and a more oxidized (MO-OOA), were also identified. MO-OOA represents local photochemical products with a diurnal profile exhibiting a pronounced noon peak, consistent with those of formaldehyde (HCHO) and Ox(= O3 + NO2). The NO+/NO2+ ion ratio in MO-OOA is much higher than that in NO3-OA and in pure ammonium nitrate, indicating the formation of organic nitrates. The nitrogen-enriched OA (NOA) factor contains ~25% of acidic inorganic salts, suggesting the formation of secondary OA via acid-base reactions of amines. The size distributions of OA factors derived from the size-resolved mass spectra show distinct diurnal evolving behaviors but overall a progressing evolution from smaller to larger particle mode as the oxidation degree of OA increases. Our results demonstrate that PMF analysis of the unified aerosol mass spectral matrix which contains both inorganic and organic aerosol signals may enable the deconvolution of more OA factors and gain more insights into the sources, processes, and chemical characteristics of OA in the atmosphere.


2011 ◽  
Vol 11 (4) ◽  
pp. 1837-1852 ◽  
Author(s):  
E. Kang ◽  
D. W. Toohey ◽  
W. H. Brune

Abstract. The oxidation of secondary organic aerosol (SOA) is studied with mass spectra analysis of SOA formed in a Potential Aerosol Mass (PAM) chamber, a small flow-through photo-oxidation chamber with extremely high OH and ozone levels. The OH exposure from a few minutes in the PAM chamber is similar to that from days to weeks in the atmosphere. The mass spectra were measured with a Quadrupole Aerosol Mass Spectrometer (Q-AMS) for SOA formed from oxidation of α-pinene, m-xylene, p-xylene, and a mixture of the three. The organic mass fractions of m/z 44 (CO2+) and m/z 43 (mainly C2H3O+), named f44 and f43 respectively, are used as indicators of the degree of organic aerosol (OA) oxidation that occurs as the OA mass concentration or the OH exposure are varied. The degree of oxidation is sensitive to both. For a fixed OH exposure, the degree of oxidation initially decreases rapidly and then more slowly as the OA mass concentration increases. For fixed initial precursor VOC amounts, the degree of oxidation increases linearly with OH exposure, with f44 increasing and f43 decreasing. In this study, the degree of SOA oxidation spans much of the range observed in the atmosphere. These results, while sensitive to the determination of f44 and f43, provide evidence that some characteristics of atmospheric OA oxidation can be generated in a PAM chamber. For all measurements in this study, the sum of f44 and f43 is 0.25 ± 0.03, so that the slope of a linear regression is approximately −1 on an f44 vs. f43 plot. This constancy of the sum suggests that these ions are complete proxies for organic mass in the OA studied.


2012 ◽  
Vol 12 (9) ◽  
pp. 24735-24764 ◽  
Author(s):  
L. Pfaffenberger ◽  
P. Barmet ◽  
J. G. Slowik ◽  
A. P. Praplan ◽  
J. Dommen ◽  
...  

Abstract. A series of smog chamber (SC) experiments was conducted to identify driving factors responsible for the discrepancy between ambient and SC aerosol degree of oxygenation. An Aerodyne high resolution time-of-flight aerosol mass spectrometer is used to compare mass spectra from α-pinene photooxidation with ambient aerosol. Composition is compared in terms of the fraction of organic mass measured at m/z 44 (f44), a surrogate for carboxylic/organic acids as well as the atomic oxygen-to-carbon ratio (O : C), vs. f43, a surrogate for aldehydes, alcohols and ketones. Low (near-ambient) organic mass concentrations were found to be necessary to obtain oxygenation levels similar to those of low-volatility oxygenated organic aerosol (LV-OOA) commonly identified in ambient measurements. The effects of organic mass loading and OH (hydroxyl radical) exposure were decoupled by inter-experiment comparisons at the same integrated OH concentration. On average, an OH exposure of 2.9 &amp;pm; 1.3 × 107 cm−3 h is needed to increase f44 by 1% during aerosol aging. For the first time, LV-OOA-like aerosol from the abundant biogenic precursor α-pinene was produced in a smog chamber by oxidation at typical atmospheric OH concentrations. Significant correlation between measured secondary organic aerosol (SOA) and reference LV-OOA mass spectra is shown by Pearson's R2 values larger than 0.90 for experiments with low organic mass concentrations between 1.5 and 15 μg m−3 at an OH exposure of 4 × 107 cm−3 h, corresponding to about two days oxidation time in the atmosphere, based on a global mean OH concentration of ∼1 × 106 cm−3. Not only is the α-pinene SOA more oxygenated at low organic mass loadings, but the functional dependence of oxygenation on mass loading is enhanced at atmospherically-relevant precursor concentrations. Since the degree of oxygenation influences the chemical, volatility and hygroscopic properties of ambient aerosol, smog chamber studies must be performed at near-ambient concentrations to accurately simulate ambient aerosol properties.


2010 ◽  
Vol 10 (10) ◽  
pp. 24053-24089
Author(s):  
E. Kang ◽  
D. W. Toohey ◽  
W. H. Brune

Abstract. The oxidation of secondary organic aerosol (SOA) is studied with mass spectra analysis of SOA formed in a Potential Aerosol Mass (PAM) chamber, a small flow-through photo-oxidation chamber with extremely high OH and ozone levels. Oxidation for a few minutes in the PAM chamber is equivalent to days to weeks in the atmosphere. The mass spectra were measured with a Quadrupole Aerosol Mass Spectrometer (Q-AMS) for SOA formed from oxidation of α-pinene, m-xylene, p-xylene, and a mixture of the three. The organic mass fraction of m/z 44 (CO2+) and m/z 43 (mainly C2H3O+), named f44 and f43, respectively, are used as indicators of the degree of organic aerosol (OA) oxidation that occurs as the OA mass concentration or the OH exposure are varied. The degree of oxidation is sensitive to both. For a fixed OH exposure, the degree of oxidation initially decreases rapidly and then more slowly as the OA mass concentration increases. For fixed initial precursor VOC amounts, the degree of oxidation increases linearly with OH exposure, with linear f44 increase and f43 decrease. The degree of oxidation seen in this study is similar to that seen in large environmental chambers for the least oxidized OA and similar to the atmosphere for the most oxidized OA. These results, while sensitive to the determination of f44 and f43, provide evidence that characteristics of atmospheric OA oxidation can be generated in a PAM chamber. For all measurements in this study, the sum of f44 and f43 is 0.25± 0.03, so that the slope of a linear regression is approximately −1 on an f44 vs. f43 plot. This constancy of the sum suggests that these ions are complete proxies for organic mass in the OA studied.


2012 ◽  
Vol 84 (5) ◽  
pp. 2111-2117 ◽  
Author(s):  
Jeremiah D. Tipton ◽  
John C. Tran ◽  
Adam D. Catherman ◽  
Dorothy R. Ahlf ◽  
Kenneth R. Durbin ◽  
...  

2010 ◽  
Vol 10 (10) ◽  
pp. 4625-4641 ◽  
Author(s):  
N. L. Ng ◽  
M. R. Canagaratna ◽  
Q. Zhang ◽  
J. L. Jimenez ◽  
J. Tian ◽  
...  

Abstract. In this study we compile and present results from the factor analysis of 43 Aerosol Mass Spectrometer (AMS) datasets (27 of the datasets are reanalyzed in this work). The components from all sites, when taken together, provide a holistic overview of Northern Hemisphere organic aerosol (OA) and its evolution in the atmosphere. At most sites, the OA can be separated into oxygenated OA (OOA), hydrocarbon-like OA (HOA), and sometimes other components such as biomass burning OA (BBOA). We focus on the OOA components in this work. In many analyses, the OOA can be further deconvolved into low-volatility OOA (LV-OOA) and semi-volatile OOA (SV-OOA). Differences in the mass spectra of these components are characterized in terms of the two main ions m/z 44 (CO2+) and m/z 43 (mostly C2H3O+), which are used to develop a new mass spectral diagnostic for following the aging of OA components in the atmosphere. The LV-OOA component spectra have higher f44 (ratio of m/z 44 to total signal in the component mass spectrum) and lower f43 (ratio of m/z 43 to total signal in the component mass spectrum) than SV-OOA. A wide range of f44 and O:C ratios are observed for both LV-OOA (0.17±0.04, 0.73±0.14) and SV-OOA (0.07±0.04, 0.35±0.14) components, reflecting the fact that there is a continuum of OOA properties in ambient aerosol. The OOA components (OOA, LV-OOA, and SV-OOA) from all sites cluster within a well-defined triangular region in the f44 vs. f43 space, which can be used as a standardized means for comparing and characterizing any OOA components (laboratory or ambient) observed with the AMS. Examination of the OOA components in this triangular space indicates that OOA component spectra become increasingly similar to each other and to fulvic acid and HULIS sample spectra as f44 (a surrogate for O:C and an indicator of photochemical aging) increases. This indicates that ambient OA converges towards highly aged LV-OOA with atmospheric oxidation. The common features of the transformation between SV-OOA and LV-OOA at multiple sites potentially enable a simplified description of the oxidation of OA in the atmosphere. Comparison of laboratory SOA data with ambient OOA indicates that laboratory SOA are more similar to SV-OOA and rarely become as oxidized as ambient LV-OOA, likely due to the higher loadings employed in the experiments and/or limited oxidant exposure in most chamber experiments.


2019 ◽  
Vol 59 (3) ◽  
Author(s):  
Julija Pauraitė ◽  
Steigvilė Byčenkienė ◽  
Kristina Plauškaitė ◽  
Algirdas Augustaitis ◽  
Vitas Marozas ◽  
...  

Volatile organic compounds (VOCs) emitted by trees in response to abiotic stress evoke high levels of secondary organic aerosol (SOA) compounds. Few techniques exist to provide chemically-resolved submicron (PM1) particle mass concentrations and source apportionment of stress-induced emissions from trees and SOA formation. The chemical composition of atmospheric aerosol particles was characterized using an aerosol chemical speciation monitor (ACSM) at a mixed-mature forest site – the Aukštaitija Integrated Monitoring Station in the eastern part of Lithuania. The organic fraction of PM1 consisted of SOA (76%) and of anthropogenic combustion related primary organic aerosol (POA) (24%). The analysis of tree trunk circumference revealed three shrinkage and three normal increase episodes. During the episodes of tree trunk circumference shrinkage, several m/z signal (m/z 42, 43, 45, 48, 50) intensities were found to be magnified together with the daily SOA concentration. The stress response analysis confirm that tree trunk circumference shrinkage may be observed through the enhancement of selected m/z signals and result in increased SOA levels.


Sign in / Sign up

Export Citation Format

Share Document