scholarly journals Influence of aerosols and surface reflectance on satellite NO<sub>2</sub> retrieval: seasonal and spatial characteristics and implications for NO<sub><i>x</i></sub> emission constraints

2015 ◽  
Vol 15 (19) ◽  
pp. 11217-11241 ◽  
Author(s):  
J.-T. Lin ◽  
M.-Y. Liu ◽  
J.-Y. Xin ◽  
K. F. Boersma ◽  
R. Spurr ◽  
...  

Abstract. Satellite retrievals of vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) normally do not explicitly account for aerosol optical effects and surface reflectance anisotropy that vary with space and time. Here, we conduct an improved retrieval of NO2 VCDs over China, called the POMINO algorithm, based on measurements from the Ozone Monitoring Instrument (OMI), and we test the importance of a number of aerosol and surface reflectance treatments in this algorithm. POMINO uses a parallelized LIDORT-driven AMFv6 package to derive tropospheric air mass factors via pixel-specific radiative transfer calculations with no look-up tables, taking slant column densities from DOMINO v2. Prerequisite cloud optical properties are derived from a dedicated cloud retrieval process that is fully consistent with the main NO2 retrieval. Aerosol optical properties are taken from GEOS-Chem simulations constrained by MODIS aerosol optical depth (AOD) data. MODIS bi-directional reflectance distribution function (BRDF) data are used for surface reflectance over land. For the present analysis, POMINO level-2 data for 2012 are aggregated into monthly means on a 0.25° long. × 0.25° lat. grid. POMINO-retrieved annual mean NO2 VCDs vary from 15–25 × 1015 cm−2 over the polluted North China Plain (NCP) to below 1015 cm−2 over much of western China. Using POMINO to infer Chinese emissions of nitrogen oxides leads to annual anthropogenic emissions of 9.05 TgN yr−1, an increase from 2006 (Lin, 2012) by about 19 %. Replacing the MODIS BRDF data with the OMLER v1 monthly climatological albedo data affects NO2 VCDs by up to 40 % for certain locations and seasons. The effect on constrained NOx emissions is small. Excluding aerosol information from the retrieval process (this is the traditional "implicit" treatment) enhances annual mean NO2 VCDs by 15–40 % over much of eastern China. Seasonally, NO2 VCDs are reduced by 10–20 % over parts of the NCP in spring and over northern China in winter, despite the general enhancements in summer and fall. The effect on subsequently constrained annual emissions is between −5 and +30 % with large seasonal and spatial dependence. The implicit aerosol treatment also tends to exclude days with high pollution, since aerosols are interpreted as effective clouds and the respective OMI pixels are often excluded by cloud screening; this is a potentially important sampling bias. Therefore an explicit treatment of aerosols is important for space-based NO2 retrievals and emission constraints. A comprehensive independent measurement network with sufficient spatial and temporal representativeness is needed to further evaluate the different satellite retrieval approaches.

2015 ◽  
Vol 15 (8) ◽  
pp. 12653-12714 ◽  
Author(s):  
J.-T. Lin ◽  
M.-Y. Liu ◽  
J.-Y. Xin ◽  
K. F. Boersma ◽  
R. Spurr ◽  
...  

Abstract. Satellite retrievals of vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) normally do not explicitly account for aerosol optical effects and surface reflectance anisotropy that vary with space and time. Here, we conduct an improved retrieval of NO2 VCDs over China, called the POMINO algorithm, based on measurements from the Ozone Monitoring Instrument (OMI), and we test the importance of a number of aerosol and surface reflectance treatments in this algorithm. POMINO uses a parallelized LIDORT-driven AMFv6 package to derive tropospheric air mass factors via pixel-specific radiative transfer calculations with no look-up tables, taking slant column densities from DOMINO v2. Prerequisite cloud optical properties are derived from a dedicated cloud retrieval process that is fully consistent with the main NO2 retrieval. Aerosol optical properties are taken from GEOS-Chem simulations constrained by MODIS AOD values. MODIS bi-directional reflectance distribution function (BRDF) data are used for surface reflectance over land. For the present analysis, POMINO level-2 data for 2012 are aggregated into monthly means on a 0.25° long. × 0.25° lat. grid. POMINO-retrieved annual mean NO2 VCDs vary from 15–25 × 1015 cm−2 over the polluted North China Plain (NCP) to below 1015 cm−2 over much of west China. The subsequently-constrained Chinese annual anthropogenic emissions are 9.05 TgN yr−1, an increase from 2006 (Lin, 2012) by about 19%. Replacing the MODIS BRDF data with the OMLER v1 monthly climatological albedo data affects NO2 VCDs by up to 40% for certain locations and seasons. The effect on constrained NOx emissions is small. Excluding aerosol information from the retrieval process (this is the traditional "implicit" treatment) enhances annual mean NO2 VCDs by 15–40% over much of east China. Seasonally, NO2 VCDs are reduced by 10–20% over parts of the NCP in spring and over north China in winter, despite the general enhancements in summer and fall. The effect on subsequently-constrained annual emissions is (−5)–(+30) % with large seasonal and spatial dependence. The implicit aerosol treatment also tends to exclude days with high pollution, a potentially important sampling bias. Therefore an explicit treatment of aerosols is important for space-based NO2 retrievals and emission constraints.


2019 ◽  
Vol 12 (1) ◽  
pp. 491-516 ◽  
Author(s):  
Julien Chimot ◽  
J. Pepijn Veefkind ◽  
Johan F. de Haan ◽  
Piet Stammes ◽  
Pieternel F. Levelt

Abstract. Global mapping of satellite tropospheric NO2 vertical column density (VCD), a key gas in air quality monitoring, requires accurate retrievals over complex urban and industrialized areas and under any atmospheric conditions. The high abundance of aerosol particles in regions dominated by anthropogenic fossil fuel combustion, e.g. megacities, and/or biomass-burning episodes, affects the space-borne spectral measurement. Minimizing the tropospheric NO2 VCD biases caused by aerosol scattering and absorption effects is one of the main retrieval challenges from air quality satellite instruments. In this study, the reference Ozone Monitoring Instrument (OMI) DOMINO-v2 product was reprocessed over cloud-free scenes, by applying new aerosol correction parameters retrieved from the 477 nm O2−O2 band, over eastern China and South America for 2 years (2006–2007). These new parameters are based on two different and separate algorithms developed during the last 2 years in view of an improved use of the OMI 477 nm O2−O2 band: the updated OMCLDO2 algorithm, which derives improved effective cloud parameters, the aerosol neural network (NN), which retrieves explicit aerosol parameters by assuming a more physical aerosol model. The OMI aerosol NN is a step ahead of OMCLDO2 because it primarily estimates an explicit aerosol layer height (ALH), and secondly an aerosol optical thickness τ for cloud-free observations. Overall, it was found that all the considered aerosol correction parameters reduce the biases identified in DOMINO-v2 over scenes in China with high aerosol abundance dominated by fine scattering and weakly absorbing particles, e.g. from [-20%:-40%] to [0 %:20 %] in summertime. The use of the retrieved OMI aerosol parameters leads in general to a more explicit aerosol correction and higher tropospheric NO2 VCD values, in the range of [0 %:40 %], than from the implicit correction with the updated OMCLDO2. This number overall represents an estimation of the aerosol correction strategy uncertainty nowadays for tropospheric NO2 VCD retrieval from space-borne visible measurements. The explicit aerosol correction theoretically includes a more realistic consideration of aerosol multiple scattering and absorption effects, especially over scenes dominated by strongly absorbing particles, where the correction based on OMCLDO2 seems to remain insufficient. However, the use of ALH and τ from the OMI NN aerosol algorithm is not a straightforward operation and future studies are required to identify the optimal methodology. For that purpose, several elements are recommended in this paper. Overall, we demonstrate the possibility of applying a more explicit aerosol correction by considering aerosol parameters directly derived from the 477 nm O2−O2 spectral band, measured by the same satellite instrument. Such an approach can, in theory, easily be transposed to the new-generation of space-borne instruments (e.g. TROPOMI on board Sentinel-5 Precursor), enabling a fast reprocessing of tropospheric NO2 data over cloud-free scenes (cloudy pixels need to be filtered out), as well as for other trace gas retrievals (e.g. SO2, HCHO).


2019 ◽  
Vol 19 (22) ◽  
pp. 14107-14117 ◽  
Author(s):  
Deming Han ◽  
Yingge Ma ◽  
Cheng Huang ◽  
Xufeng Zhang ◽  
Hao Xu ◽  
...  

Abstract. Perfluoroalkyl acids (PFAAs) are a form of toxic pollutant that can be transported across the globe and accumulated in the bodies of wildlife and humans. A nationwide geographical investigation considering atmospheric PFAAs via a passive air sampler (PAS) based on XAD (a styrene–divinylbenzene copolymer) was conducted in 23 different provinces/municipalities/autonomous regions in China, which provides an excellent chance to investigate their occurrences, spatial trends, and potential sources. The total atmospheric concentrations of 13 PFAAs (n=268) were 6.19–292.57 pg m−3, with an average value of 39.84±28.08 pg m−3, which were higher than other urban levels but lower than point source measurements. Perfluorooctanoic acid (PFOA) was the dominant PFAA (20.6 %), followed by perfluorohexanoic acid (PFHxA), perfluorooctane sulfonate (PFOS), and perfluoroheptanoic acid (PFPeA). An increasing seasonal trend of PFAA concentrations was shown as summer < autumn < spring < winter, which may be initiated by stagnant meteorological conditions. Spatially, the content of PFAAs displayed a declining gradient trend of central China > northern China > eastern China > north-eastern China > south-western China > north-western China > southern China, and Henan contributed the largest proportion of PFAAs. Four sources of PFAAs were identified using a positive matrix factorization (PMF) model, including PFOS-based products (26.1 %), products based on PFOA and perfluorononanoic acid (PFNA; 36.6 %), degradation products of fluorotelomer-based products (15.5 %), and an unknown source (21.8 %).


2017 ◽  
Vol 10 (9) ◽  
pp. 3133-3149 ◽  
Author(s):  
Nickolay A. Krotkov ◽  
Lok N. Lamsal ◽  
Edward A. Celarier ◽  
William H. Swartz ◽  
Sergey V. Marchenko ◽  
...  

Abstract. We describe the new version 3.0 NASA Ozone Monitoring Instrument (OMI) standard nitrogen dioxide (NO2) products (SPv3). The products and documentation are publicly available from the NASA Goddard Earth Sciences Data and Information Services Center (https://disc.gsfc.nasa.gov/datasets/OMNO2_V003/summary/). The major improvements include (1) a new spectral fitting algorithm for NO2 slant column density (SCD) retrieval and (2) higher-resolution (1° latitude and 1.25° longitude) a priori NO2 and temperature profiles from the Global Modeling Initiative (GMI) chemistry–transport model with yearly varying emissions to calculate air mass factors (AMFs) required to convert SCDs into vertical column densities (VCDs). The new SCDs are systematically lower (by ∼ 10–40 %) than previous, version 2, estimates. Most of this reduction in SCDs is propagated into stratospheric VCDs. Tropospheric NO2 VCDs are also reduced over polluted areas, especially over western Europe, the eastern US, and eastern China. Initial evaluation over unpolluted areas shows that the new SPv3 products agree better with independent satellite- and ground-based Fourier transform infrared (FTIR) measurements. However, further evaluation of tropospheric VCDs is needed over polluted areas, where the increased spatial resolution and more refined AMF estimates may lead to better characterization of pollution hot spots.


2020 ◽  
Author(s):  
Steven Compernolle ◽  
Tijl Verhoelst ◽  
Gaia Pinardi ◽  
José Granville ◽  
Daan Hubert ◽  
...  

Abstract. The QA4ECV version 1.1 stratospheric and tropospheric NO2 vertical column density (VCD) climate data records (CDR) from the satellite sensor OMI are validated, using NDACC zenith scattered light DOAS (ZSL-DOAS) and Multi Axis-DOAS (MAX-DOAS) data as a reference. The QA4ECV OMI stratospheric VCD have a small bias of ~ 0.2 Pmolec cm-2 (5–10 %) and a dispersion of 0.2 to 1 Pmolec cm-2 with respect to the ZSL-DOAS measurements. QA4ECV tropospheric VCD observations from OMI are restricted to near-cloud-free scenes, leading to a negative sampling bias (with respect to the unrestricted scene ensemble) of a few Pmolec cm-2 up to −10 Pmolec cm-2 (−40 %) in one extreme high-pollution case. QA4ECV OMI tropospheric VCD has a negative bias with respect to the MAX-DOAS data (−1 to −4 Pmolec cm-2), a feature also found for the OMI OMNO2 standard data product. The tropospheric VCD discrepancies between satellite and ground-based data exceed by far the combined measurement uncertainties. Depending on the site, part of the discrepancy can be attributed to a combination of comparison errors (notably horizontal smoothing difference error), measurement/retrieval errors related to clouds and aerosols, and to the difference in vertical smoothing and a priori profile assumptions.


2020 ◽  
Vol 20 (13) ◽  
pp. 8017-8045 ◽  
Author(s):  
Steven Compernolle ◽  
Tijl Verhoelst ◽  
Gaia Pinardi ◽  
José Granville ◽  
Daan Hubert ◽  
...  

Abstract. The QA4ECV (Quality Assurance for Essential Climate Variables) version 1.1 stratospheric and tropospheric NO2 vertical column density (VCD) climate data records (CDRs) from the OMI (Ozone Monitoring Instrument) satellite sensor are validated using NDACC (Network for the Detection of Atmospheric Composition Change) zenith-scattered light differential optical absorption spectroscopy (ZSL-DOAS) and multi-axis DOAS (MAX-DOAS) data as a reference. The QA4ECV OMI stratospheric VCDs have a small bias of ∼0.2 Pmolec.cm-2 (5 %–10 %) and a dispersion of 0.2 to 1 Pmolec.cm-2 with respect to the ZSL-DOAS measurements. QA4ECV tropospheric VCD observations from OMI are restricted to near-cloud-free scenes, leading to a negative sampling bias (with respect to the unrestricted scene ensemble) of a few peta molecules per square centimetre (Pmolec.cm-2) up to −10 Pmolec.cm-2 (−40 %) in one extreme high-pollution case. The QA4ECV OMI tropospheric VCD has a negative bias with respect to the MAX-DOAS data (−1 to −4 Pmolec.cm-2), which is a feature also found for the OMI OMNO2 standard data product. The tropospheric VCD discrepancies between satellite measurements and ground-based data greatly exceed the combined measurement uncertainties. Depending on the site, part of the discrepancy can be attributed to a combination of comparison errors (notably horizontal smoothing difference error), measurement/retrieval errors related to clouds and aerosols, and the difference in vertical smoothing and a priori profile assumptions.


Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 444 ◽  
Author(s):  
Chunjiao Wang ◽  
Ting Wang ◽  
Pucai Wang

In recent years, new and strict air quality regulations have been implemented in China. Therefore, it is of great significance to evaluate the current air pollution situation and effectiveness of actions. In this study, Ozone Monitoring Instrument (OMI) satellite data were used to detect the spatiotemporal characteristics of tropospheric NO2 columns over China from 2005 to 2018, including spatial distribution, seasonal cycles and long-term trends. The averaged NO2 pollution is higher in southeastern China and lower in the northwest, which are well delineated by the Heihe–Tengchong line. Furthermore, the NO2 loadings are highest in the North China Plain, with vertical column density (VCD) exceeding 13 × 1015 molec cm−2. Regarding the seasonal cycle, the NO2 loadings in eastern China is highest in winter and lowest in summer, while the western region shows the opposite feature. The amplitude of annual range increase gradually from the south to the north. If the entire period of 2005–2018 is taken into account, China has experienced little change in NO2. In fact, however, there appears to be significant trends of an increase followed by a downward tendency, with the turning point in the year 2012. In the former episode of 2005–2012, increasing trends overwhelm nearly the whole nation, especially in the Jing–Jin–Tang region, Shandong Province, and Northern Henan and Southern Hebei combined regions, where the rising rates were as high as 1.0–1.8 × 1015 molec cm−2 year−1. In contrast, the latter episode of 2013–2018 features remarkable declines in NO2 columns over China. Particularly, the regions where the decreased degree was remarkable in 2013–2018 were consistent with the regions where the upward trend was obvious in 2005–2012. Overall, this upward–downward pattern is true for most parts of China. However, some of the largest metropolises, such as Beijing, Shanghai and Guangzhou, witnessed a continuous decrease in the NO2 amounts, indicating earlier and more stringent measures adopted in these areas. Finally, it can be concluded that China’s recent efforts to cut NO2 pollution are successful, especially in mega cities.


2016 ◽  
Vol 16 (10) ◽  
pp. 6207-6221 ◽  
Author(s):  
Yuanzheng Cui ◽  
Jintai Lin ◽  
Chunqiao Song ◽  
Mengyao Liu ◽  
Yingying Yan ◽  
...  

Abstract. Western China has experienced rapid industrialization and urbanization since the implementation of the National Western Development Strategies (the "Go West" movement) in 1999. This transition has affected the spatial and temporal characteristics of nitrogen dioxide (NO2) pollution. In this study, we analyze the trends and variability of tropospheric NO2 vertical column densities (VCDs) from 2005 to 2013 over Western China, based on a wavelet analysis on monthly mean NO2 data derived from the Ozone Monitoring Instrument (OMI) measurements. We focus on the anthropogenic NO2 by subtracting region-specific "background" values dominated by natural sources. After removing the background influences, we find significant anthropogenic NO2 growth over Western China between 2005 and 2013 (8.6 ± 0.9 % yr−1 on average, relative to 2005), with the largest increments (15 % yr−1 or more) over parts of several city clusters. The NO2 pollution in most provincial-level regions rose rapidly from 2005 to 2011 but stabilized or declined afterwards. The NO2 trends were driven mainly by changes in anthropogenic emissions, as confirmed by a nested GEOS-Chem model simulation and a comparison with Chinese official emission statistics. The rate of NO2 growth during 2005–2013 reaches 11.3 ± 1.0 % yr−1 over Northwestern China, exceeding the rates over Southwestern China (5.9 ± 0.6 % yr−1) and the three well-known polluted regions in the east (5.3 ± 0.8 % yr−1 over Beijing-Tianjin-Hebei, 4.0 ± 0.6 % yr−1 over the Yangtze River Delta, and −3.3 ± 0.3 % yr−1 over the Pearl River Delta). Subsequent socioeconomic analyses suggest that the rapid NO2 growth over Northwestern China is likely related to the fast developing resource- and pollution-intensive industries along with the "Go West" movement as well as relatively weak emission controls. Further efforts should be made to alleviate NOx pollution to achieve sustainable development in Western China.


2011 ◽  
Vol 52 (58) ◽  
pp. 81-88 ◽  
Author(s):  
Yinsheng Zhang ◽  
Y. Guo

AbstarctWe used atmospheric air-temperature data from the Chinese radiosonde network to analyze changes in freezing-level heights (FLHs) during the past 48 years and studied their impacts on the cryosphere. We examined radiosonde time-series data from 92 selected Chinese radiosonde network stations. Generally, FLH exhibited a latitudinal zone, declining from the south. The FLH trend during 1958–2005 showed spatial inhomogeneity, most uniform distributions during autumn, and significant upward trends. Temporal variability of FLH in eastern China was briefly associated with El Niño Southern Oscillation events, but the causes of FLH changes in western China require further investigation. FLH in western and northern China has mostly increased since 1958, and might be considered a possible indicator of cryospheric change during the second half of the 20th century. There were significant correlations between FLH and changes in snow cover, glaciers and permafrost.


1991 ◽  
Vol 36 (1) ◽  
pp. 37-60 ◽  
Author(s):  
Jin-qi Fang

AbstractThroughout China over the last 30,000 years high lake levels were reached during 30,000–24,000, 22,500-20,000, and 9500-3500 yr B.P. Lake recovery after the last glacial maximum (LGM) apparently was much slower, and involved stronger regional differences, than was lake regression during the onset of the last glaciation. According to the character of lake development during the last 18,000 years, three regions and six subregions have been distinguished. In the Tibetan Plateau and alpine regions of western China the plentiful supply of meltwater may have caused lakes to recover and reach their highest levels fust after the LGM. Lake hydrology in central and northern China was directly controlled by rainfall and evaporation, and most lakes reached their highest levels between 9500 and 3500 yr B.P. In the lowlands of eastern China lake recovery was closely tied with channel aggradation and water level rise of rivers, which are associated with Holocene sea level rise and human agricultural activities. Most lakes recovered and were most extensive in the middle and late Holocene.


Sign in / Sign up

Export Citation Format

Share Document