scholarly journals Secondary organic aerosol formation from hydroxyl radical oxidation and ozonolysis of monoterpenes

2015 ◽  
Vol 15 (2) ◽  
pp. 991-1012 ◽  
Author(s):  
D. F. Zhao ◽  
M. Kaminski ◽  
P. Schlag ◽  
H. Fuchs ◽  
I.-H. Acir ◽  
...  

Abstract. Oxidation by hydroxyl radical (OH) and ozonolysis are the two major pathways of daytime biogenic volatile organic compound (BVOC) oxidation and secondary organic aerosol (SOA) formation. In this study, we investigated the particle formation of several common monoterpenes (α-pinene, β-pinene and limonene) by OH-dominated oxidation, which has seldom been investigated. OH oxidation experiments were carried out in the SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction) chamber in Jülich, Germany, at low NOx (0.01 ~ 1 ppbV) and low ozone (O3) concentration (< 20 ppbV). OH concentration and total OH reactivity (kOH) were measured directly, and through this the overall reaction rate of total organics with OH in each reaction system was quantified. Multi-generation reaction process, particle growth, new particle formation (NPF), particle yield and chemical composition were analyzed and compared with that of monoterpene ozonolysis. Multi-generation products were found to be important in OH-dominated SOA formation. The relative role of functionalization and fragmentation in the reaction process of OH oxidation was analyzed by examining the particle mass and the particle size as a function of OH dose. We developed a novel method which quantitatively links particle growth to the reaction rate of OH with total organics in a reaction system. This method was also used to analyze the evolution of functionalization and fragmentation of organics in the particle formation by OH oxidation. It shows that functionalization of organics was dominant in the beginning of the reaction (within two lifetimes of the monoterpene) and fragmentation started to play an important role after that. We compared particle formation from OH oxidation with that from pure ozonolysis. In individual experiments, growth rates of the particle size did not necessarily correlate with the reaction rate of monoterpene with OH and O3. Comparing the size growth rates at the similar reaction rates of monoterpene with OH or O3 indicates that, generally, OH oxidation and ozonolysis had similar efficiency in particle growth. The SOA yield of α-pinene and limonene by ozonolysis was higher than that of OH oxidation. Aerosol mass spectrometry (AMS) shows SOA elemental composition from OH oxidation follows a slope shallower than −1 in the O / C vs. H / C diagram, also known as Van Krevelen diagram, indicating that oxidation proceeds without significant loss of hydrogen. SOA from OH oxidation had higher H / C ratios than SOA from ozonolysis. In ozonolysis, a process with significant hydrogen loss seemed to play an important role in SOA formation.

2014 ◽  
Vol 14 (9) ◽  
pp. 12591-12634 ◽  
Author(s):  
D. F. Zhao ◽  
M. Kaminski ◽  
P. Schlag ◽  
H. Fuchs ◽  
I.-H. Acir ◽  
...  

Abstract. Oxidation by hydroxyl radical (OH) and ozonolysis are the two major pathways of daytime biogenic volatile organic compounds (VOCs) oxidation and secondary organic aerosol (SOA) formation. In this study, we investigated the particle formation of several common monoterpenes (α-pinene, β-pinene, and limonene) by OH dominated oxidation, which has seldom been investigated. OH oxidation experiments were carried out in the SAPHIR chamber in Jülich, Germany, at low NOx (0.01–1 ppbV) and low ozone (O3) concentration. OH concentration and OH reactivity were measured directly so that the overall reaction rates of organic compounds with OH were quantified. Multi-generation reaction process, particle growth, new particle formation, particle yield, and chemical composition were analyzed and compared with that of monoterpene ozonolysis. Multi-generation products were found to be important in OH dominated SOA formation. The relative role of functionalization and fragmentation in the reaction process of OH oxidation was analyzed by examining the particle mass and the particle size as a function of OH dose. We developed a novel method which quantitatively links particle growth to the reaction of OH with organics in a reaction system. This method was also used to analyze the evolution of functionalization and fragmentation of organics in the particle formation by OH oxidation. It shows that functionalization of organics was dominant in the beginning of the reaction (within two lifetimes of the monoterpene) and fragmentation started to be dominant after that. We compared particle formation from OH oxidation with that from pure ozonolysis. In individual experiments, growth rates of the particle size did not necessarily correlate with the reaction rate of monoterpene with OH and O3. Comparing the size growth rates at the similar reaction rates of monoterpene with OH or O3 indicates that generally, OH oxidation and ozonolysis had similar efficiency in particle growth. The SOA yield of α-pinene and limonene by ozonolysis was higher than that of OH oxidation. Aerosol mass spectrometry (AMS) shows SOA elemental composition from OH oxidation follows a slope shallower than −1 in the O / C vs. H / C diagram, indicating that oxidation proceeds without significant loss of hydrogen. SOA from OH oxidation had higher H / C ratios than SOA from ozonolysis. In ozonolysis, a process with significant hydrogen loss seemed to play an important role in SOA formation.


2019 ◽  
Vol 19 (5) ◽  
pp. 2787-2812 ◽  
Author(s):  
Betty Croft ◽  
Randall V. Martin ◽  
W. Richard Leaitch ◽  
Julia Burkart ◽  
Rachel Y.-W. Chang ◽  
...  

Abstract. Summertime Arctic aerosol size distributions are strongly controlled by natural regional emissions. Within this context, we use a chemical transport model with size-resolved aerosol microphysics (GEOS-Chem-TOMAS) to interpret measurements of aerosol size distributions from the Canadian Arctic Archipelago during the summer of 2016, as part of the “NETwork on Climate and Aerosols: Addressing key uncertainties in Remote Canadian Environments” (NETCARE) project. Our simulations suggest that condensation of secondary organic aerosol (SOA) from precursor vapors emitted in the Arctic and near Arctic marine (ice-free seawater) regions plays a key role in particle growth events that shape the aerosol size distributions observed at Alert (82.5∘ N, 62.3∘ W), Eureka (80.1∘ N, 86.4∘ W), and along a NETCARE ship track within the Archipelago. We refer to this SOA as Arctic marine SOA (AMSOA) to reflect the Arctic marine-based and likely biogenic sources for the precursors of the condensing organic vapors. AMSOA from a simulated flux (500 µgm-2day-1, north of 50∘ N) of precursor vapors (with an assumed yield of unity) reduces the summertime particle size distribution model–observation mean fractional error 2- to 4-fold, relative to a simulation without this AMSOA. Particle growth due to the condensable organic vapor flux contributes strongly (30 %–50 %) to the simulated summertime-mean number of particles with diameters larger than 20 nm in the study region. This growth couples with ternary particle nucleation (sulfuric acid, ammonia, and water vapor) and biogenic sulfate condensation to account for more than 90 % of this simulated particle number, which represents a strong biogenic influence. The simulated fit to summertime size-distribution observations is further improved at Eureka and for the ship track by scaling up the nucleation rate by a factor of 100 to account for other particle precursors such as gas-phase iodine and/or amines and/or fragmenting primary particles that could be missing from our simulations. Additionally, the fits to the observed size distributions and total aerosol number concentrations for particles larger than 4 nm improve with the assumption that the AMSOA contains semi-volatile species: the model–observation mean fractional error is reduced 2- to 3-fold for the Alert and ship track size distributions. AMSOA accounts for about half of the simulated particle surface area and volume distributions in the summertime Canadian Arctic Archipelago, with climate-relevant simulated summertime pan-Arctic-mean top-of-the-atmosphere aerosol direct (−0.04 W m−2) and cloud-albedo indirect (−0.4 W m−2) radiative effects, which due to uncertainties are viewed as an order of magnitude estimate. Future work should focus on further understanding summertime Arctic sources of AMSOA.


2018 ◽  
Author(s):  
Betty Croft ◽  
Randall V. Martin ◽  
W. Richard Leaitch ◽  
Julia Burkart ◽  
Rachel Y.-W. Chang ◽  
...  

Abstract. Summertime Arctic aerosol size distributions are strongly controlled by natural regional emissions. Within this context, we use a chemical transport model with size-resolved aerosol microphysics (GEOS-Chem-TOMAS) to interpret measurements of aerosol size distributions from the Canadian Arctic Archipelago during the summer of 2016, as part of the NETwork on Climate and Aerosols: addressing key uncertainties in Remote Canadian Environments (NETCARE). Our simulations suggest that condensation of secondary organic aerosol (SOA) from precursor vapors emitted in the Arctic and near Arctic marine (open ocean and coastal) regions plays a key role in particle growth events that shape the aerosol size distributions observed at Alert (82.5° N, 62.3° W), Eureka (80.1° N, 86.4° W), and along a NETCARE ship track within the Archipelago. We refer to this SOA as Arctic marine SOA (Arctic MSOA) to reflect the Arctic marine-based and likely biogenic sources for the precursors of the condensing organic vapors. Arctic MSOA from a simulated flux (500 μg m−2 d−1, north of 50° N) of precursor vapors (assumed yield of unity) reduces the summertime particle size distribution model-observation mean fractional error by 2- to 4-fold, relative to a simulation without this Arctic MSOA. Particle growth due to the condensable organic vapor flux contributes strongly (30–50 %) to the simulated summertime-mean number of particles with diameters larger than 20 nm in the study region, and couples with ternary particle nucleation (sulfuric acid, ammonia, and water vapor) and biogenic sulfate condensation to account for more than 90 % of this simulated particle number, a strong biogenic influence. The simulated fit to summertime size-distribution observations is further improved at Eureka and for the ship track by scaling up the nucleation rate by a factor of 100 to account for other particle precursors such as gas-phase iodine and/or amines and/or fragmenting primary particles that could be missing from our simulations. Additionally, the fits to observed size distributions and total aerosol number concentrations for particles larger than 4 nm improve with the assumption that the Arctic MSOA contains semi-volatile species; reducing model-observation mean fractional error by 2- to 3-fold for the Alert and ship track size distributions. Arctic MSOA accounts for more than half of the simulated total particulate organic matter mass concentrations in the summertime Canadian Arctic Archipelago, and this Arctic MSOA has strong simulated summertime pan-Arctic-mean top-of-the-atmosphere aerosol direct (−0.04 W m−2) and cloud-albedo indirect (−0.4 W m−2) radiative effects. Future work should focus on further understanding summertime Arctic sources of Arctic MSOA.


2016 ◽  
Vol 16 (3) ◽  
pp. 1245-1254 ◽  
Author(s):  
T. P. Riedel ◽  
Y.-H. Lin ◽  
Z. Zhang ◽  
K. Chu ◽  
J. A. Thornton ◽  
...  

Abstract. Isomeric epoxydiols from isoprene photooxidation (IEPOX) have been shown to produce substantial amounts of secondary organic aerosol (SOA) mass and are therefore considered a major isoprene-derived SOA precursor. Heterogeneous reactions of IEPOX on atmospheric aerosols form various aerosol-phase components or "tracers" that contribute to the SOA mass burden. A limited number of the reaction rate constants for these acid-catalyzed aqueous-phase tracer formation reactions have been constrained through bulk laboratory measurements. We have designed a chemical box model with multiple experimental constraints to explicitly simulate gas- and aqueous-phase reactions during chamber experiments of SOA growth from IEPOX uptake onto acidic sulfate aerosol. The model is constrained by measurements of the IEPOX reactive uptake coefficient, IEPOX and aerosol chamber wall losses, chamber-measured aerosol mass and surface area concentrations, aerosol thermodynamic model calculations, and offline filter-based measurements of SOA tracers. By requiring the model output to match the SOA growth and offline filter measurements collected during the chamber experiments, we derive estimates of the tracer formation reaction rate constants that have not yet been measured or estimated for bulk solutions.


2015 ◽  
Vol 15 (20) ◽  
pp. 28289-28316 ◽  
Author(s):  
T. P. Riedel ◽  
Y.-H. Lin ◽  
Z. Zhang ◽  
K. Chu ◽  
J. A. Thornton ◽  
...  

Abstract. Isomeric epoxydiols from isoprene photooxidation (IEPOX) have been shown to produce substantial amounts of secondary organic aerosol (SOA) mass and are therefore considered a major isoprene-derived SOA precursor. Heterogeneous reactions of IEPOX on atmospheric aerosols form various aerosol-phase components or "tracers" that contribute to the SOA mass burden. A limited number of the reaction rate constants for these acid-catalyzed aqueous-phase tracer formation reactions have been constrained through bulk laboratory measurements. We have designed a chemical box model with multiple experimental constraints to explicitly simulate gas- and aqueous-phase reactions during chamber experiments of SOA growth from IEPOX uptake onto acidic sulfate aerosol. The model is constrained by measurements of the IEPOX reactive uptake coefficient, IEPOX and aerosol chamber wall-losses, chamber-measured aerosol mass and surface area concentrations, aerosol thermodynamic model calculations, and offline filter-based measurements of SOA tracers. By requiring the model output to match the SOA growth and offline filter measurements collected during the chamber experiments, we derive estimates of the tracer formation reaction rate constants that have not yet been measured or estimated for bulk solutions.


2018 ◽  
Vol 20 (9) ◽  
pp. 6591-6597
Author(s):  
A. E. Vizenor ◽  
A. A. Asa-Awuku

Cloud condensation nuclei (CCN) activity and the hygroscopicity of secondary organic aerosol (SOA) depends on the particle size and composition, explicitly, the thermodynamic properties of the aerosol solute and subsequent interactions with water. The gas-to-aerosol phase partitioning is critical for aerosol composition and thus gas-phase vapors and kinetics can play an important role in the CCN activity of SOA.


2014 ◽  
Vol 14 (8) ◽  
pp. 3865-3881 ◽  
Author(s):  
M. I. García ◽  
S. Rodríguez ◽  
Y. González ◽  
R. D. García

Abstract. A climatology of new particle formation (NPF) events at high altitude in the subtropical North Atlantic is presented. A 4-year data set (June 2008–June 2012), which includes number size distributions (10–600 nm), reactive gases (SO2, NOx, and O3), several components of solar radiation and meteorological parameters, measured at Izaña Global Atmosphere Watch (GAW) observatory (2373 m above sea level; Tenerife, Canary Islands) was analysed. NPF is associated with the transport of gaseous precursors from the boundary layer by orographic buoyant upward flows that perturb the low free troposphere during daytime. On average, 30% of the days contained an NPF event. Mean values of the formation and growth rates during the study period were 0.46 cm−3 s−1 and 0.42 nm h−1, correspondingly. There is a clearly marked NPF season (May–August), when these events account for 50–60% of the days per month. Monthly mean values of the formation and growth rates exhibit higher values in this season, 0.49–0.92 cm−3 s−1 and 0.48–0.58 nm h−1, respectively. During NPF events, SO2, UV radiation and upslope winds showed higher values than during non-events. The overall data set indicates that SO2 plays a key role as precursor, although other species seem to contribute during some periods. Condensation of sulfuric acid vapour accounts for most of the measured particle growth during most of the year (~70%), except for some periods. In May, the highest mean growth rates (~0.6 nm h−1) and the lowest contribution of sulfuric acid (~13%) were measured, suggesting a significant involvement of other condensing vapours. The SO2 availability seems also to be the most influencing parameter in the year-to-year variability in the frequency of NPF events. The condensation sink showed similar features to other mountain sites, showing high values during NPF events. Summertime observations, when Izaña is within the Saharan Air Layer, suggest that dust particles may play a significant role acting as coagulation sink of freshly formed nucleation particles. The contribution of dust particles to the condensation sink of sulfuric acid vapours seems to be modest (~8% as average). Finally, we identified a set of NPF events in which two nucleation modes, which may evolve at different rates, occur simultaneously and for which further investigations are necessary.


2016 ◽  
Author(s):  
Biwu Chu ◽  
Xiao Zhang ◽  
Yongchun Liu ◽  
Hong He ◽  
Yele Sun ◽  
...  

Abstract. The effects of SO2 and NH3 on secondary organic aerosol formation have rarely been investigated together, while the interactive effects between inorganic and organic species under highly complex pollution conditions remain uncertain. Here we studied the effects of SO2 and NH3 on secondary aerosol formation in the photooxidation system of toluene/NOx in the presence or absence of Al2O3 seed aerosols in a 2 m3 smog chamber. The presence of SO2 increased new particle formation and particle growth significantly, regardless of whether NH3 was present or not. Sulfate, organic aerosol, nitrate and ammonium were all found to increase linearly with increasing SO2 concentrations. The increases in these four species were more obvious under NH3-rich conditions, and the generation of nitrate, ammonium and organic aerosol increased more significantly than sulfate with respect to SO2 concentration, while sulfate was the most sensitive species under NH3-poor conditions. The synergistic effects between SO2 and NH3 in the heterogeneous process contributed greatly to secondary aerosol formation. Specifically, the generation of NH4NO3 was found to be highly dependent on the surface area concentration of suspended particles, and increased most significantly among the four species with respect to SO2 concentration under ammonia-rich conditions. Meanwhile, the absorbed NH3 might provide a liquid surface layer for the absorption and subsequent reaction of SO2 and organic products, and therefore, enhance sulfate and secondary organic aerosol (SOA) formation. This effect mainly occurred in the heterogeneous process and resulted in a significantly higher growth rate of seed aerosols compared to that without NH3. By applying positive matrix factorization (PMF) analysis to the AMS data, two factors were identified for the generated SOA. One factor, assigned to less-oxidized organic aerosol and some oligomers, increased with increasing SO2 under NH3-poor conditions, mainly due to the well-known acid catalytic effect of the acid products on SOA formation in the heterogeneous process. The other factor, assigned to the highly oxidized organic component and some nitrogen-containing organics (NOC), increased with SO2 under a NH3-rich environment, with NOC (organonitrates and NOC with reduced N) contributing most of the increase.


2018 ◽  
Vol 18 (9) ◽  
pp. 6171-6186 ◽  
Author(s):  
Penglin Ye ◽  
Yunliang Zhao ◽  
Wayne K. Chuang ◽  
Allen L. Robinson ◽  
Neil M. Donahue

Abstract. We have investigated the production of secondary organic aerosol (SOA) from pinanediol (PD), a precursor chosen as a semi-volatile surrogate for first-generation oxidation products of monoterpenes. Observations at the CLOUD facility at CERN have shown that oxidation of organic compounds such as PD can be an important contributor to new-particle formation. Here we focus on SOA mass yields and chemical composition from PD photo-oxidation in the CMU smog chamber. To determine the SOA mass yields from this semi-volatile precursor, we had to address partitioning of both the PD and its oxidation products to the chamber walls. After correcting for these losses, we found OA loading dependent SOA mass yields from PD oxidation that ranged between 0.1 and 0.9 for SOA concentrations between 0.02 and 20 µg m−3, these mass yields are 2–3 times larger than typical of much more volatile monoterpenes. The average carbon oxidation state measured with an aerosol mass spectrometer was around −0.7. We modeled the chamber data using a dynamical two-dimensional volatility basis set and found that a significant fraction of the SOA comprises low-volatility organic compounds that could drive new-particle formation and growth, which is consistent with the CLOUD observations.


Sign in / Sign up

Export Citation Format

Share Document