scholarly journals Contribution of oil and natural gas production to renewed increase in atmospheric methane (2007–2014): top–down estimate from ethane and methane column observations

2016 ◽  
Vol 16 (5) ◽  
pp. 3227-3244 ◽  
Author(s):  
Petra Hausmann ◽  
Ralf Sussmann ◽  
Dan Smale

Abstract. Harmonized time series of column-averaged mole fractions of atmospheric methane and ethane over the period 1999–2014 are derived from solar Fourier transform infrared (FTIR) measurements at the Zugspitze summit (47° N, 11° E; 2964 m a.s.l.) and at Lauder (45° S, 170° E; 370 m a.s.l.). Long-term trend analysis reveals a consistent renewed methane increase since 2007 of 6.2 [5.6, 6.9] ppb yr−1 (parts-per-billion per year) at the Zugspitze and 6.0 [5.3, 6.7] ppb yr−1 at Lauder (95 % confidence intervals). Several recent studies provide pieces of evidence that the renewed methane increase is most likely driven by two main factors: (i) increased methane emissions from tropical wetlands, followed by (ii) increased thermogenic methane emissions due to growing oil and natural gas production. Here, we quantify the magnitude of the second class of sources, using long-term measurements of atmospheric ethane as a tracer for thermogenic methane emissions. In 2007, after years of weak decline, the Zugspitze ethane time series shows the sudden onset of a significant positive trend (2.3 [1.8, 2.8]  ×  10−2 ppb yr−1 for 2007–2014), while a negative trend persists at Lauder after 2007 (−0.4 [−0.6, −0.1]  ×  10−2 ppb yr−1). Zugspitze methane and ethane time series are significantly correlated for the period 2007–2014 and can be assigned to thermogenic methane emissions with an ethane-to-methane ratio (EMR) of 12–19 %. We present optimized emission scenarios for 2007–2014 derived from an atmospheric two-box model. From our trend observations we infer a total ethane emission increase over the period 2007–2014 from oil and natural gas sources of 1–11 Tg yr−1 along with an overall methane emission increase of 24–45 Tg yr−1. Based on these results, the oil and natural gas emission contribution (C) to the renewed methane increase is deduced using three different emission scenarios with dedicated EMR ranges. Reference scenario 1 assumes an oil and gas emission combination with EMR  =  7.0–16.2 %, which results in a minimum contribution C  >  39 % (given as lower bound of 95 % confidence interval). Beside this most plausible scenario 1, we consider two less realistic limiting cases of pure oil-related emissions (scenario 2 with EMR  =  16.2–31.4 %) and pure natural gas sources (scenario 3 with EMR  =  4.4–7.0  %), which result in C  >  18 % and C  >  73 %, respectively. Our results suggest that long-term observations of column-averaged ethane provide a valuable constraint on the source attribution of methane emission changes and provide basic knowledge for developing effective climate change mitigation strategies.

2015 ◽  
Vol 15 (24) ◽  
pp. 35991-36028 ◽  
Author(s):  
P. Hausmann ◽  
R. Sussmann ◽  
D. Smale

Abstract. Harmonized time series of column-averaged mole fractions of atmospheric methane and ethane over the period 1999–2014 are derived from solar Fourier transform infrared (FTIR) measurements at the Zugspitze summit (47° N, 2964 m a.s.l.) and at Lauder (45° S, 370 m a.s.l.). Long-term trend analysis reveals a consistent renewed methane increase since 2007 of 6.2 [5.6, 6.9] ppb yr−1 at the Zugspitze and 6.0 [5.3, 6.7] ppb yr−1 at Lauder (95 % confidence intervals). Several recent studies provide pieces of evidence that the renewed methane increase is most likely driven by two main factors: (i) increased methane emissions from tropical wetlands, followed by (ii) increased thermogenic methane emissions due to growing oil and natural gas production. Here, we quantify the magnitude of the second class of sources, using long-term measurements of atmospheric ethane as tracer for thermogenic methane emissions. In 2007, after years of weak decline, the Zugspitze ethane time series shows the sudden onset of a significant positive trend (2.3 [1.8, 2.8] × 10-2 ppb yr−1 for 2007–2014), while a negative trend persists at Lauder after 2007 (−0.4 [−0.6, −0.1] × 10-2 ppb yr−1). Zugspitze methane and ethane time series are significantly correlated for the period 2007–2014 and can be assigned to thermogenic methane emissions with an ethane-to-methane ratio of 10–21 %. We present optimized emission scenarios for 2007–2014 derived from an atmospheric two-box model. From our trend observations we infer a total ethane emission increase over the period 2007–2014 from oil and natural gas sources of 1–11 Tg yr−1 along with an overall methane emission increase of 24–45 Tg yr−1. Based on these results, the oil and natural gas emission contribution C to the renewed methane increase is deduced using three different emission scenarios with dedicated ranges of methane-to-ethane ratios (MER). Reference scenario 1 assumes an oil and gas emission combination with MER = 3.3–7.6, which results in a minimum contribution C > 28 % (given as lower bound of 99 % confidence interval). For the limiting cases of pure oil-related emissions with MER = 1.7–3.3 (scenario 2) and pure natural gas sources with MER = 7.6–12.1 (scenario 3) the results are C > 13 % and C > 53 %, respectively. Our results suggest that long-term observations of column-averaged ethane provide a valuable constraint on the source attribution of methane emission changes and provide basic knowledge for developing effective climate change mitigation strategies.


2020 ◽  
Author(s):  
David R. Lyon ◽  
Benjamin Hmiel ◽  
Ritesh Gautam ◽  
Mark Omara ◽  
Kate Roberts ◽  
...  

Abstract. Methane emissions associated with the production, transport, and use of oil and natural gas increase the climatic impacts of energy use; however, little is known about how emissions vary temporally and with commodity prices. We present airborne and ground-based data, supported by satellite observations, to measure weekly to monthly changes in total methane emissions in the United States’ Permian Basin during a period of volatile oil prices associated with the COVID-19 pandemic. As oil prices declined from ~$ 60 to $ 20 per barrel, emissions changed concurrently from 3.4 % to 1.5 % of gas production; as prices partially recovered, emissions increased back to near initial values. Concurrently, total oil and natural gas production only declined by a maximum of ~10 % from the peak values seen in the months prior to the crash. Activity data indicate that a rapid decline in well development and subsequent effects on associated gas flaring and midstream infrastructure throughput are the likely drivers of temporary emission reductions. Our results, along with past satellite observations, suggest that under more typical price conditions, the Permian Basin is in a state of overcapacity in which rapidly growing natural gas production exceeds midstream capacity and leads to high methane emissions.


2020 ◽  
Author(s):  
Dieter Franke ◽  
Andreas Bahr ◽  
Johannes Gütschow ◽  
Martin Blumenberg ◽  
Stefan Ladage ◽  
...  

<p>The worldwide operating petroleum industry is considered as one of the major contributors to global anthropogenic methane emissions. However, not only absolute numbers of methane emissions from oil and natural gas production and distribution vary greatly in different global inventories, also the relative contribution of the oil and the gas sector is under discussion. In different studies, the majority of methane emissions are assigned either to natural gas or to the oil sector. For the climate emission origins are of course irrelevant, however, for the climate budget of natural gas usage it is important to know which emissions are attributable to natural gas and what number is related to oil production with its associated natural gas.</p><p>Here we use the Federal Institute of Geosciences and Natural Resources’ (BGR) worldwide database on natural oil and gas production and consumption, dating back to 1900, and compare it to global bottom-up methane emission inventories. We will present and discuss several regression approaches that fit the global data reasonably well. In addition, methane emissions of country groups are compared to natural oil and gas production and consumption data. This study finds that the emission factors that relate to gas production released during oil and gas extraction likely vary over the time and across different production areas in the world.</p>


2020 ◽  
Author(s):  
Pieternel Levelt ◽  
Pepijn Veefkind ◽  
Esther Roosenbrand ◽  
John Lin ◽  
Jochen Landgraf ◽  
...  

<p>Production of oil and natural gas in North America is at an all-time high due to the development and use of horizontal drilling and hydraulic fracturing. Methane emissions associated with this industrial activity are a concern because of the contribution to climate radiative forcing. We present new measurements from the space-based TROPOspheric Monitoring Instrument (TROPOMI) launched in 2017 that show methane enhancements over production regions in the United States. Using methane and NO<sub>2</sub> column measurements from the new TROPOMI instrument, we show that emissions from oil and gas production in the Uintah and Permian Basins can be observed in the data from individual overpasses. This is a vast improvement over measurements from previous satellite instruments, which typically needed to be averaged over a year or more to quantify trends and regional enhancements in methane emissions. In the Uintah Basin in Utah, TROPOMI methane columns correlated with in-situ measurements, and the highest columns were observed over the deepest parts of the basin, consistent with the accumulation of emissions underneath inversions. In the Permian Basin in Texas and New Mexico, methane columns showed maxima over regions with the highest natural gas production and were correlated with nitrogen-dioxide columns at a ratio that is consistent with results from in-situ airborne measurements. The improved detail provided by TROPOMI will likely enable the timely monitoring from space of methane and NO2 emissions associated with regular oil and natural gas production.</p>


2021 ◽  
Vol 21 (9) ◽  
pp. 6605-6626
Author(s):  
David R. Lyon ◽  
Benjamin Hmiel ◽  
Ritesh Gautam ◽  
Mark Omara ◽  
Katherine A. Roberts ◽  
...  

Abstract. Methane emissions associated with the production, transport, and use of oil and natural gas increase the climatic impacts of energy use; however, little is known about how emissions vary temporally and with commodity prices. We present airborne and ground-based data, supported by satellite observations, to measure weekly to monthly changes in total methane emissions in the United States' Permian Basin during a period of volatile oil prices associated with the COVID-19 pandemic. As oil prices declined from ∼ USD 60 to USD 20 per barrel, emissions changed concurrently from 3.3 % to 1.9 % of natural gas production; as prices partially recovered, emissions increased back to near initial values. Concurrently, total oil and natural gas production only declined by ∼ 10 % from the peak values seen in the months prior to the crash. Activity data indicate that a rapid decline in well development and subsequent effects on associated gas flaring and midstream infrastructure throughput are the likely drivers of temporary emission reductions. Our results, along with past satellite observations, suggest that under more typical price conditions, the Permian Basin is in a state of overcapacity in which rapidly growing associated gas production exceeds midstream capacity and leads to high methane emissions.


Elem Sci Anth ◽  
2019 ◽  
Vol 7 ◽  
Author(s):  
C. S. Foster ◽  
E. T. Crosman ◽  
J. D. Horel ◽  
S. Lyman ◽  
B. Fasoli ◽  
...  

This study presents a meteorologically-based methodology for quantifying basin-scale methane (CH4) emissions in Utah’s Uintah Basin, which is home to over 9,000 active and producing oil and natural gas wells. Previous studies in oil and gas producing regions have often relied on intensive aircraft campaigns to estimate methane emissions. However, the high cost of airborne campaigns prevents their frequent undertaking, thus providing only daytime snapshots of emissions rather than more temporally-representative estimates over multiple days. Providing estimates of CH4 emissions from oil and natural gas production regions across the United States is important to inform leakage rates and emission mitigation efforts in order to curb the potential impacts of these emissions on global climate change and local air quality assessments. Here we introduce the Basin-constrained Emissions Estimate (BEE) method, which utilizes the confining topography of a basin and known depth of a pollution layer during multi-day wintertime cold-air pool episodes to relate point observations of CH4 to basin-scale CH4 emission rates. This study utilizes ground-based CH4 observations from three fixed sites to calculate daily increases in CH4, a laser ceilometer to estimate pollution layer depth, and a Lagrangian transport model to assess the spatial representativity of surface observations. BEE was applied to two cold-air pool episodes during the winter of 2015–2016 and yielded CH4 emission estimates between 44.60 +/– 9.66 × 103 and 61.82 +/– 19.76 × 103 kg CH4 hr–1, which are similar to the estimates proposed by previous studies performed in the Uintah Basin. The techniques used in this study could potentially be utilized in other deep basins worldwide.


Author(s):  
S. E. Puliafito ◽  
L. Berná ◽  
A. Lopez-Noreña ◽  
R. Pascual ◽  
T. Bolaño-Ortiz

Abstract. Methane emissions have very important effect on global radiative forcing. Therefore, reducing these emissions has been proposed as an effective short-term strategy to mitigate global warming, in parallel with reductions in long-lived carbon dioxide (CO2) for long- term temperature stabilizations. In this context, Argentina emits 3645 Gg of CH4 mainly from livestock production, biomass burning and natural gas production. Since 2018, TROPOMI instruments provide global coverage on methane column-average mole fraction of dry air (XCH4), and height profiles of methane concentrations. We compare two available methane inventory: a national (a high resolution of own ellaboration: GEAA) and an international (EDGAR) emissions database with TROPOMI measurements. By performing inverse satellite retrieval we evaluate the ability of remote sensing information to detect possible hotspot methane emissions and compare these results with the two inventories. From these analyzes, we observe that the latitudinal averages of the continental sector increase at a rate of 10 ppb/degree, from south to north, while the maritime sector remains constant. From a temporary perspective, the average monthly concentration amplitude range varies 40 to 50 ppb, with minimum values in March and maximum values in September.


2020 ◽  
Vol 6 (17) ◽  
pp. eaaz5120 ◽  
Author(s):  
Yuzhong Zhang ◽  
Ritesh Gautam ◽  
Sudhanshu Pandey ◽  
Mark Omara ◽  
Joannes D. Maasakkers ◽  
...  

Using new satellite observations and atmospheric inverse modeling, we report methane emissions from the Permian Basin, which is among the world’s most prolific oil-producing regions and accounts for >30% of total U.S. oil production. Based on satellite measurements from May 2018 to March 2019, Permian methane emissions from oil and natural gas production are estimated to be 2.7 ± 0.5 Tg a−1, representing the largest methane flux ever reported from a U.S. oil/gas-producing region and are more than two times higher than bottom-up inventory-based estimates. This magnitude of emissions is 3.7% of the gross gas extracted in the Permian, i.e., ~60% higher than the national average leakage rate. The high methane leakage rate is likely contributed by extensive venting and flaring, resulting from insufficient infrastructure to process and transport natural gas. This work demonstrates a high-resolution satellite data–based atmospheric inversion framework, providing a robust top-down analytical tool for quantifying and evaluating subregional methane emissions.


Author(s):  
A. D. Chalfoun

Abstract Purpose of Review Anthropogenic activities can lead to the loss, fragmentation, and alteration of wildlife habitats. I reviewed the recent literature (2014–2019) focused on the responses of avian, mammalian, and herpetofaunal species to oil and natural gas development, a widespread and still-expanding land use worldwide. My primary goals were to identify any generalities in species’ responses to development and summarize remaining gaps in knowledge. To do so, I evaluated the directionality of a wide variety of responses in relation to taxon, location, development type, development metric, habitat type, and spatiotemporal aspects. Recent Findings Studies (n = 70) were restricted to the USA and Canada, and taxonomically biased towards birds and mammals. Longer studies, but not those incorporating multiple spatial scales, were more likely to detect significant responses. Negative responses of all types were present in relatively low frequencies across all taxa, locations, development types, and development metrics but were context-dependent. The directionality of responses by the same species often varied across studies or development metrics. Summary The state of knowledge about wildlife responses to oil and natural gas development has developed considerably, though many biases and gaps remain. Studies outside of North America and that focus on herpetofauna are lacking. Tests of mechanistic hypotheses for effects, long-term studies, assessment of response thresholds, and experimental designs that isolate the effects of different stimuli associated with development, remain critical. Moreover, tests of the efficacy of habitat mitigation efforts have been rare. Finally, investigations of the demographic effects of development across the full annual cycle were absent for non-game species and are critical for the estimation of population-level effects.


Sign in / Sign up

Export Citation Format

Share Document