scholarly journals Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling

2016 ◽  
Vol 16 (7) ◽  
pp. 4283-4305 ◽  
Author(s):  
Zhe Peng ◽  
Douglas A. Day ◽  
Amber M. Ortega ◽  
Brett B. Palm ◽  
Weiwei Hu ◽  
...  

Abstract. Oxidation flow reactors (OFRs) using low-pressure Hg lamp emission at 185 and 254 nm produce OH radicals efficiently and are widely used in atmospheric chemistry and other fields. However, knowledge of detailed OFR chemistry is limited, allowing speculation in the literature about whether some non-OH reactants, including several not relevant for tropospheric chemistry, may play an important role in these OFRs. These non-OH reactants are UV radiation, O(1D), O(3P), and O3. In this study, we investigate the relative importance of other reactants to OH for the fate of reactant species in OFR under a wide range of conditions via box modeling. The relative importance of non-OH species is less sensitive to UV light intensity than to water vapor mixing ratio (H2O) and external OH reactivity (OHRext), as both non-OH reactants and OH scale roughly proportionally to UV intensity. We show that for field studies in forested regions and also the urban area of Los Angeles, reactants of atmospheric interest are predominantly consumed by OH. We find that O(1D), O(3P), and O3 have relative contributions to volatile organic compound (VOC) consumption that are similar or lower than in the troposphere. The impact of O atoms can be neglected under most conditions in both OFR and troposphere. We define “riskier OFR conditions” as those with either low H2O (< 0.1 %) or high OHRext ( ≥  100 s−1 in OFR185 and > 200 s−1 in OFR254). We strongly suggest avoiding such conditions as the importance of non-OH reactants can be substantial for the most sensitive species, although OH may still dominate under some riskier conditions, depending on the species present. Photolysis at non-tropospheric wavelengths (185 and 254 nm) may play a significant (> 20 %) role in the degradation of some aromatics, as well as some oxidation intermediates, under riskier reactor conditions, if the quantum yields are high. Under riskier conditions, some biogenics can have substantial destructions by O3, similarly to the troposphere. Working under low O2 (volume mixing ratio of 0.002) with the OFR185 mode allows OH to completely dominate over O3 reactions even for the biogenic species most reactive with O3. Non-tropospheric VOC photolysis may have been a problem in some laboratory and source studies, but can be avoided or lessened in future studies by diluting source emissions and working at lower precursor concentrations in laboratory studies and by humidification. Photolysis of secondary organic aerosol (SOA) samples is estimated to be significant (> 20 %) under the upper limit assumption of unity quantum yield at medium (1 × 1013 and 1.5 × 1015 photons cm−2 s−1 at 185 and 254 nm, respectively) or higher UV flux settings. The need for quantum yield measurements of both VOC and SOA photolysis is highlighted in this study. The results of this study allow improved OFR operation and experimental design and also inform the design of future reactors.

2015 ◽  
Vol 15 (17) ◽  
pp. 23543-23586 ◽  
Author(s):  
Z. Peng ◽  
D. A. Day ◽  
A. M. Ortega ◽  
B. B. Palm ◽  
W. W. Hu ◽  
...  

Abstract. Oxidation flow reactors (OFRs) using low-pressure Hg lamp emission at 185 and 254 nm produce OH radicals efficiently and are widely used in atmospheric chemistry and other fields. However, knowledge of detailed OFR chemistry is limited, allowing speculation in the literature about whether some non-OH reactants, including several not relevant for tropospheric chemistry, may play an important role in these OFRs. These non-OH reactants are UV radiation, O(1D), O(3P), and O3. In this study, we investigate the relative importance of other reactants to OH for the fate of reactant species in OFR under a wide range of conditions via box modeling. The relative importance of non-OH species is less sensitive to UV light intensity than to relative humidity (RH) and external OH reactivity (OHRext), as both non-OH reactants and OH scale roughly proportional to UV intensity. We show that for field studies in forested regions and also the urban area of Los Angeles, reactants of atmospheric interest are predominantly consumed by OH. We find that O(1D), O(3P), and O3 have relative contributions to VOC consumption that are similar or lower than in the troposphere. The impact of O atoms can be neglected under most conditions in both OFR and troposphere. Under "pathological OFR conditions" of low RH and/or high OHRext, the importance of non-OH reactants is enhanced because OH is suppressed. Some biogenics can have substantial destructions by O3, and photolysis at non-tropospheric wavelengths (185 and 254 nm) may also play a significant role in the degradation of some aromatics under pathological conditions. Working under low O2 with the OFR185 mode allows OH to completely dominate over O3 reactions even for the biogenic species most reactive with O3. Non-tropospheric VOC photolysis may have been a problem in some laboratory and source studies, but can be avoided or lessened in future studies by diluting source emissions and working at lower precursor concentrations in lab studies, and by humidification. SOA photolysis is shown to be insignificant for most functional groups, except for nitrates and especially aromatics, which may be photolyzed at high UV flux settings. Our work further establishes the OFR's usefulness as a tool to study atmospheric chemistry and enables better experiment design and interpretation, as well as improved future reactor design.


2014 ◽  
Vol 18 (04) ◽  
pp. 326-335 ◽  
Author(s):  
Yusuf Yılmaz ◽  
John Mack ◽  
M. Kasım Şener ◽  
Mehmet Sönmez ◽  
Tebello Nyokong

The synthesis of metal free, magnesium and zinc tetrakis(2-benzoyl-4-chlorophenoxy) phthalocyanine derivatives (2–4) is described along with their characterization by elemental analysis, IR, UV-visible absorption, and 1 H NMR spectroscopy and mass spectrometry. Trends observed in the fluorescence, triplet state, singlet oxygen and photodegradation quantum yields and the triplet state lifetimes are also analyzed. The compounds exhibit high solubility in a wide range of organic solvents and no evidence of aggregation was observed over a wide concentration range. The Zn ( II ) complex (4) was found to have a very high singlet oxygen quantum yield (ΦΔ = 0.78) in dimethylsulfoxide (DMSO) and a reasonably large triplet state quantum yield (ΦT = 0.82). The photophysical and photochemical properties clearly demonstrate that these compounds could prove useful in singlet oxygen applications such as photodynamic therapy (PDT). DFT and TD-DFT calculations were used to assess the impact of the positional isomerism of the 2-benzoyl-4-chlorophenoxy substituents on the electronic structures and optical spectroscopy.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 680
Author(s):  
Chris D. Boone ◽  
Johnathan Steffen ◽  
Jeff Crouse ◽  
Peter F. Bernath

Line-of-sight wind profiles are derived from Doppler shifts in infrared solar occultation measurements from the Atmospheric Chemistry Experiment Fourier transform spectrometers (ACE-FTS), the primary instrument on SCISAT, a satellite-based mission for monitoring the Earth’s atmosphere. Comparisons suggest a possible eastward bias from 20 m/s to 30 m/s in ACE-FTS results above 80 km relative to some datasets but no persistent bias relative to other datasets. For instruments operating in a limb geometry, looking through a wide range of altitudes, smearing of the Doppler effect along the line of sight can impact the measured signal, particularly for saturated absorption lines. Implications of Doppler effect smearing are investigated for forward model calculations and volume mixing ratio retrievals. Effects are generally small enough to be safely ignored, except for molecules having a large overhang in their volume mixing ratio profile, such as carbon monoxide.


2020 ◽  
Author(s):  
Franziska Winterstein ◽  
Patrick Jöckel ◽  
Martin Dameris ◽  
Michael Ponater ◽  
Fabian Tanalski ◽  
...  

&lt;p&gt;Methane (CH&lt;sub&gt;4&lt;/sub&gt;) is the second most important greenhouse gas, which atmospheric concentration is influenced by human activities and currently on a sharp rise. We present a study with numerical simulations using a Chemistry-Climate-Model (CCM), which are performed to assess possible consequences of strongly enhanced CH&lt;sub&gt;4&lt;/sub&gt; concentrations in the Earth's atmosphere for the climate.&lt;/p&gt;&lt;p&gt;Our analysis includes experiments with 2xCH&lt;sub&gt;4&lt;/sub&gt; and 5xCH&lt;sub&gt;4&lt;/sub&gt; present day (2010) lower boundary mixing ratios using the CCM EMAC. The simulations are conducted with prescribed oceanic conditions, mimicking present day tropospheric temperatures as its changes are largely suppressed. By doing so we are able to investigate the quasi-instantaneous chemical impact on the atmosphere. We find that the massive increase in CH&lt;sub&gt;4&lt;/sub&gt; strongly influences the tropospheric chemistry by reducing the OH abundance and thereby extending the tropospheric CH&lt;sub&gt;4&lt;/sub&gt; lifetime as well as the residence time of other chemical pollutants. The region above the tropopause is impacted by a substantial rise in stratospheric water vapor (SWV). The stratospheric ozone (O&lt;sub&gt;3&lt;/sub&gt;) column increases overall, but SWV induced stratospheric cooling also leads to enhanced ozone depletion in the Antarctic lower stratosphere. Regional&amp;#160; patterns of ozone change are affected by modification of stratospheric dynamics, i.e. increased tropical up-welling and stronger meridional transport&amp;#160; towards the polar regions. We calculate the net radiative impact (RI) of the 2xCH&lt;sub&gt;4&lt;/sub&gt; experiment to be 0.69 W m&lt;sup&gt;-2&lt;/sup&gt; and for the 5xCH&lt;sub&gt;4&lt;/sub&gt; experiment to be 1.79 W m&lt;sup&gt;-2&lt;/sup&gt;. A substantial part of the RI is contributed by chemically induced O&lt;sub&gt;3&lt;/sub&gt; and SWV changes, in line with previous radiative forcing estimates and is for the first time splitted and spatially asigned to its chemical contributors.&lt;/p&gt;&lt;p&gt;This numerical study using a CCM with prescibed oceanic conditions shows the rapid responses to significantly enhanced CH&lt;sub&gt;4&lt;/sub&gt; mixing ratios, which is the first step towards investigating the impact of possible strong future CH&lt;sub&gt;4&lt;/sub&gt; emissions on atmospheric chemistry and its feedback on climate.&lt;/p&gt;


2005 ◽  
Vol 5 (7) ◽  
pp. 1915-1929 ◽  
Author(s):  
J. Cortinovis ◽  
F. Solmon ◽  
D. Serça ◽  
C. Sarrat ◽  
R. Rosset

Abstract. Research during the past decades has outlined the importance of biogenic isoprene emission in tropospheric chemistry and regional ozone photo-oxidant pollution. The first part of this article focuses on the development and validation of a simple biogenic emission scheme designed for regional studies. Experimental data sets relative to Boreal, Tropical, Temperate and Mediterranean ecosystems are used to estimate the robustness of the scheme at the canopy scale, and over contrasted climatic and ecological conditions. A good agreement is generally found when comparing field measurements and simulated emission fluxes, encouraging us to consider the model suitable for regional application. Limitations of the scheme are nevertheless outlined as well as further on-going improvements. In the second part of the article, the emission scheme is used on line in the broader context of a meso-scale atmospheric chemistry model. Dynamically idealized simulations are carried out to study the chemical interactions of pollutant plumes with realistic isoprene emissions coming from a Mediterranean oak forest. Two types of anthropogenic sources, respectively representative of the Marseille (urban) and Martigues (industrial) French Mediterranean sites, and both characterized by different VOC/NOx are considered. For the Marseille scenario, the impact of biogenic emission on ozone production is larger when the forest is situated in a sub-urban configuration (i.e. downwind distance TOWN-FOREST <30km, considering an advection velocity of 4.2 m.s-1). In this case the enhancement of ozone production due to isoprene can reach +37% in term of maximum surface concentrations and +11% in term of total ozone production. The impact of biogenic emission decreases quite rapidly when the TOWN-FOREST distance increases. For the Martigues scenario, the biogenic impact on the plume is significant up to TOWN-FOREST distance of 90km where the ozone maximum surface concentration enhancement can still reach +30%. For both cases, the importance of the VOC/NOx ratio in the anthropogenic plume and its evolution when interacting with the forest emission are outlined. In complement to real case studies, this idealized approach can be particularly useful for process and sensitivity studies and constitutes a valuable tool to build regional ozone control strategies.


2003 ◽  
Vol 3 (3) ◽  
pp. 2331-2352 ◽  
Author(s):  
N. Taniguchi ◽  
S. Hayashida ◽  
K. Takahashi ◽  
Y. Matsumi

Abstract. The production yields of excited oxygen O(1D) atoms from the near ultraviolet O3 photolysis are essential quantities for atmospheric chemistry calculations because of its importance as major sources of hydroxyl (OH) radicals and nitric oxide (NO). Recently, new O(1D) quantum yields from O3 photolysis between 230 and 305 nm in the Hartley band region were reported, which are almost independent of the photolysis wavelength (0.88-0.93) and smaller than NASA/JPL-2000 recommendation (0.95 between 240 and 300 nm). In order to assess consequences of the new data of O(1D) quantum yields on the stratospheric chemistry, the changes in stratospheric chemical partitioning and O3 concentration are examined using a one-dimensional atmospheric model. Our steady state model simulations for mid-latitude in March indicate that the smaller O(1D) quantum yields result in increases of stratospheric O3 (up to ~2% in the upper stratosphere), which are attributed to the changes in HOx, NOx, and ClOx abundance and their catalyzed O3 loss rates.


2015 ◽  
Vol 8 (11) ◽  
pp. 4863-4890 ◽  
Author(s):  
Z. Peng ◽  
D. A. Day ◽  
H. Stark ◽  
R. Li ◽  
J. Lee-Taylor ◽  
...  

Abstract. Oxidation flow reactors (OFRs) using OH produced from low-pressure Hg lamps at 254 nm (OFR254) or both 185 and 254 nm (OFR185) are commonly used in atmospheric chemistry and other fields. OFR254 requires the addition of externally formed O3 since OH is formed from O3 photolysis, while OFR185 does not since O2 can be photolyzed to produce O3, and OH can also be formed from H2O photolysis. In this study, we use a plug-flow kinetic model to investigate OFR properties under a very wide range of conditions applicable to both field and laboratory studies. We show that the radical chemistry in OFRs can be characterized as a function of UV light intensity, H2O concentration, and total external OH reactivity (OHRext, e.g., from volatile organic compounds (VOCs), NOx, and SO2). OH exposure is decreased by added external OH reactivity. OFR185 is especially sensitive to this effect at low UV intensity due to low primary OH production. OFR254 can be more resilient against OH suppression at high injected O3 (e.g., 70 ppm), as a larger primary OH source from O3, as well as enhanced recycling of HO2 to OH, make external perturbations to the radical chemistry less significant. However if the external OH reactivity in OFR254 is much larger than OH reactivity from injected O3, OH suppression can reach 2 orders of magnitude. For a typical input of 7 ppm O3 (OHRO3 = 10 s−1), 10-fold OH suppression is observed at OHRext ~ 100 s−1, which is similar or lower than used in many laboratory studies. The range of modeled OH suppression for literature experiments is consistent with the measured values except for those with isoprene. The finding on OH suppression may have important implications for the interpretation of past laboratory studies, as applying OHexp measurements acquired under different conditions could lead to over a 1-order-of-magnitude error in the estimated OHexp. The uncertainties of key model outputs due to uncertainty in all rate constants and absorption cross-sections in the model are within ±25 % for OH exposure and within ±60 % for other parameters. These uncertainties are small relative to the dynamic range of outputs. Uncertainty analysis shows that most of the uncertainty is contributed by photolysis rates of O3, O2, and H2O and reactions of OH and HO2 with themselves or with some abundant species, i.e., O3 and H2O2. OHexp calculated from direct integration and estimated from SO2 decay in the model with laminar and measured residence time distributions (RTDs) are generally within a factor of 2 from the plug-flow OHexp. However, in the models with RTDs, OHexp estimated from SO2 is systematically lower than directly integrated OHexp in the case of significant SO2 consumption. We thus recommended using OHexp estimated from the decay of the species under study when possible, to obtain the most appropriate information on photochemical aging in the OFR. Using HOx-recycling vs. destructive external OH reactivity only leads to small changes in OHexp under most conditions. Changing the identity (rate constant) of external OH reactants can result in substantial changes in OHexp due to different reductions in OH suppression as the reactant is consumed. We also report two equations for estimating OH exposure in OFR254. We find that the equation estimating OHexp from measured O3 consumption performs better than an alternative equation that does not use it, and thus recommend measuring both input and output O3 concentrations in OFR254 experiments. This study contributes to establishing a firm and systematic understanding of the gas-phase HOx and Ox chemistry in these reactors, and enables better experiment planning and interpretation as well as improved design of future reactors.


2019 ◽  
Author(s):  
Franziska Winterstein ◽  
Fabian Tanalski ◽  
Patrick Jöckel ◽  
Martin Dameris ◽  
Michael Ponater

Abstract. Methane (CH4) is the second most important greenhouse gas, which atmospheric concentration is influenced by human activities. In this study, numerical simulations with a chemistry-climate model (CCM) are performed aiming to assess possible consequences of significantly enhanced CH4 concentrations in the Earth's atmosphere for the climate. We analyze experiments with 2xCH4 and 5xCH4 present day (2010) mixing ratio and its quasi-instantaneous chemical impact on the atmosphere. The massive increase in CH4 strongly influences the tropospheric chemistry by reducing the hydroxyl radical (OH) abundance and thereby extending the CH4 lifetime as well as the residence time of other chemical pollutants. The region above the tropopause is impacted by a substantial rise in stratospheric water vapor (SWV). The stratospheric ozone (O3) column increases overall, but SWV induced stratospheric cooling also leads to a enhanced ozone depletion in the Antarctic lower stratosphere. Regional patterns of ozone change are affected by modification of stratospheric dynamics, i.e. increased tropical up-welling and stronger meridional transport towards the polar regions. We calculate the net radiative impact (RI) of the 2xCH4 experiment to be 0.69 W/m2 and for the 5xCH4 experiment to be 1.79 W/m2. A substantial part of the RI is contributed by chemically induced O3 and SWV changes, in line with previous radiative forcing estimates. To our knowledge this is the first numerical study using a CCM with respect to two/fivefold CH4 concentrations and it is therefore an overdue analysis as it emphasizes the impact of possible strong future CH4 emissions on atmospheric chemistry and its feedback on climate.


2015 ◽  
Vol 15 (15) ◽  
pp. 21025-21061
Author(s):  
E. D. Sofen ◽  
D. Bowdalo ◽  
M. J. Evans

Abstract. Surface ozone observations with modern instrumentation have been made around the world for almost 50 years. Some of these observations have been made as one-off activities with short term, specific science objectives and some have been made as part of wider networks which have provided a foundational infrastructure of data collection, calibration, quality control and dissemination. These observations provide a fundamental underpinning to our understanding of tropospheric chemistry, air quality policy, atmosphere-biosphere interactions, etc. Sofen et al. (2015) brought together 8 of these networks to provide a single dataset of surface ozone observations. We investigate how representative this combined dataset is of global surface ozone using the output from a global atmospheric chemistry model. We estimate that on an area basis, 25 % of the globe is observed (34 % land, 21 % ocean). Whereas Europe and North America have almost complete coverage, other continents such as Africa, South America and Asia (12–17 %) show significant gaps. Antarctica is surprisingly well observed (78 %). Little monitoring occurs over the oceans with the tropical and southern oceans particularly poorly represented. The surface ozone over key biomes such as tropical forests and savanna is almost completely unmonitored. A chemical cluster analysis suggests that a significant number of observations are made of polluted air masses, but cleaner air masses whether over the land or ocean (especially again in the tropics) are significantly under observed. The current network is unlikely to see the impact of ENSO but may be capable of detecting other planetary scale signals. Model assessment and validation activities are hampered by a lack of observations in regions where they models differ substantially, as is the ability to monitor likely changes in surface ozone over the next century. Using our methodology we are able to suggest new sites which would help to close the gap in our ability to measure global surface ozone. An additional 20 surface ozone monitoring sites (a 20 % increase in the WMO GAW ozone sites or a 1 % increase in the total background network) located on 10 islands and in 10 continental regions would almost double the area observed. The cost of this addition to the network is small compared to other expenditure on atmospheric composition research infrastructure and would provide a significant long term benefit to our understanding of the composition of the atmosphere and in the development of policy.


2003 ◽  
Vol 3 (5) ◽  
pp. 1293-1300 ◽  
Author(s):  
N. Taniguchi ◽  
S. Hayashida ◽  
K. Takahashi ◽  
Y. Matsumi

Abstract. The production yields of excited oxygen O(1D) atoms from the near ultraviolet O3 photolysis are essential quantities for atmospheric chemistry calculations because of its importance as major sources of hydroxyl (OH) radicals and nitric oxide (NO). Recently, new O(1D) quantum yields from O3 photolysis between 230 and 305 nm in the Hartley band region were reported, which are almost independent of the photolysis wavelength (0.88-0.93) and smaller than NASA/JPL-2000 recommendations (0.95 between 240 and 300 nm). In order to assess consequences of the new data of O(1D) quantum yields on the stratospheric chemistry, the changes in stratospheric chemical partitioning and O3 concentration are examined using a one-dimensional atmospheric model. Our steady state model simulations for 40° N in March indicate that the smaller O(1D) quantum yields result in increases of stratospheric O3 (up to ~2% in the upper stratosphere), which are attributed to the changes in HOx, NOx, and ClOx abundance and their catalyzed O3 loss rates.


Sign in / Sign up

Export Citation Format

Share Document