scholarly journals Detecting long-term changes in point-source fossil CO<sub>2</sub> emissions with tree ring archives

2016 ◽  
Vol 16 (9) ◽  
pp. 5481-5495 ◽  
Author(s):  
Elizabeth D. Keller ◽  
Jocelyn C. Turnbull ◽  
Margaret W. Norris

Abstract. We examine the utility of tree ring 14C archives for detecting long-term changes in fossil CO2 emissions from a point source. Trees assimilate carbon from the atmosphere during photosynthesis, in the process faithfully recording the average atmospheric 14C content in each new annual tree ring. Using 14C as a proxy for fossil CO2, we examine interannual variability over six years of fossil CO2 observations between 2004–2005 and 2011–2012 from two trees growing near the Kapuni Gas Treatment Plant in rural Taranaki, New Zealand. We quantify the amount of variability that can be attributed to transport and meteorology by simulating constant point-source fossil CO2 emissions over the observation period with the atmospheric transport model WindTrax. We compare model simulation results to observations and calculate the amount of change in emissions that we can detect with new observations over annual or multi-year time periods, given both the measurement uncertainty of 1ppm and the modelled variation in transport. In particular, we ask, what is the minimum amount of change in emissions that we can detect using this method, given a reference period of six years? We find that changes of 42 % or more could be detected in a new sample from one year at the same observation location or 22 % in the case of four years of new samples. This threshold is reduced and the method becomes more practical the more the size of the signal increases. For point sources 10 times larger than the Kapuni plant (a more typical size for power plants worldwide), it would be possible to detect sustained emissions changes on the order of 10 %, given suitable meteorology and observations.

2016 ◽  
Author(s):  
E. D. Keller ◽  
J. C. Turnbull ◽  
M. W. Norris

Abstract. We examine the utility of tree ring 14C archives for detecting long term changes in fossil CO2 emissions from a point source. Trees assimilate carbon from the atmosphere during photosynthesis, in the process faithfully recording the average atmospheric 14C content in each new annual tree ring. Using 14C as a proxy for fossil CO2, we examine interannual variability over six years of fossil CO2 observations between 2004-05 and 2011-12 from two trees growing near the Kapuni Natural Gas Plant in rural Taranaki, New Zealand. We quantify the amount of variability that can be attributed to transport and meteorology by simulating constant point source fossil CO2 emissions over the observation period with the atmospheric transport model WindTrax. We compare model simulation results to observations and calculate the amount of change in emissions that we can detect with new observations over annual or multi-year time periods given both measurement uncertainty of 1ppm and the modelled variation in transport. In particular, we ask, what is the minimum amount of change in emissions that we can detect using this method, given a reference period of six years? We find that changes of 42% or more could be detected in a new sample from one year at the same observation location, or 22% in the case of four years of new samples. This threshold lowers and the method becomes more practical the more the size of the signal increases. For point sources 10 times larger than the Kapuni plant (a more typical size for power plants worldwide), it would be possible to detect sustaine d emissions changes on the order of 10% given suitable meteorology and observations.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 811
Author(s):  
Yaqin Hu ◽  
Yusheng Shi

The concentration of atmospheric carbon dioxide (CO2) has increased rapidly worldwide, aggravating the global greenhouse effect, and coal-fired power plants are one of the biggest contributors of greenhouse gas emissions in China. However, efficient methods that can quantify CO2 emissions from individual coal-fired power plants with high accuracy are needed. In this study, we estimated the CO2 emissions of large-scale coal-fired power plants using Orbiting Carbon Observatory-2 (OCO-2) satellite data based on remote sensing inversions and bottom-up methods. First, we mapped the distribution of coal-fired power plants, displaying the total installed capacity, and identified two appropriate targets, the Waigaoqiao and Qinbei power plants in Shanghai and Henan, respectively. Then, an improved Gaussian plume model method was applied for CO2 emission estimations, with input parameters including the geographic coordinates of point sources, wind vectors from the atmospheric reanalysis of the global climate, and OCO-2 observations. The application of the Gaussian model was improved by using wind data with higher temporal and spatial resolutions, employing the physically based unit conversion method, and interpolating OCO-2 observations into different resolutions. Consequently, CO2 emissions were estimated to be 23.06 ± 2.82 (95% CI) Mt/yr using the Gaussian model and 16.28 Mt/yr using the bottom-up method for the Waigaoqiao Power Plant, and 14.58 ± 3.37 (95% CI) and 14.08 Mt/yr for the Qinbei Power Plant, respectively. These estimates were compared with three standard databases for validation: the Carbon Monitoring for Action database, the China coal-fired Power Plant Emissions Database, and the Carbon Brief database. The comparison found that previous emission inventories spanning different time frames might have overestimated the CO2 emissions of one of two Chinese power plants on the two days that the measurements were made. Our study contributes to quantifying CO2 emissions from point sources and helps in advancing satellite-based monitoring techniques of emission sources in the future; this helps in reducing errors due to human intervention in bottom-up statistical methods.


2003 ◽  
Vol 38 (1) ◽  
pp. 77-113 ◽  
Author(s):  
Chan Hee Park ◽  
Peter M. Huck

Abstract This paper describes a conceptual model to estimate Cryptosporidium parvum oocyst transport from source to water treatment plant intake. The intent of the model is ultimately to be able to predict oocyst concentrations at an intake to an order-of-magnitude level. The transport and fate mechanisms included are: oocyst detachment from waste or soil, generation of runoff, overland transport, reservoir and in-stream transport, and oocyst die-off. The model is formulated in finite difference form, and deals with both non-point sources from manure-applied areas, and point sources from wastewater treatment plants. An important contribution of this work is the recognition that the settling rates of free and floc- or particle-associated oocysts can be considerably different. This has important implications for their transport. A finite difference scheme was developed for five sections of a hypothetical watershed: a point source, a lake or reservoir (which can be modelled as either a continuous stirred tank reactor or an ideal rectangular setting tank), the section of stream channel from the outlet of the lake or reservoir to the confluence with another stream, a tributary with a non-point source, and the stream section from the confluence to a water treatment plant intake. The stream confluence is handled with a simple mass and flow balance. It would be very expensive to collect the necessary data to test the model. Because an appropriate data set was not available, the model was tested by means of a sensitivity analysis for the hypothetical watershed, using reasonable parameter settings for the base case. The major contribution of the model is in defining the mechanisms involved in oocyst transport within a watershed. It gives important insights into the significance of various factors, provides a basis for data collection, and identifies areas where experimental investigations are required to avoid the need for simplifying assumptions. At its current state of development, the model cannot be used to provide quantitative predictions, but defines a base from which further detailed modelling can be developed to aid in decisionmaking for pathogen control. Using the framework that this model provides, contributions from other sources of Cryptosporidium oocysts such as domestic animals and combined sewage overflows could also be modelled.


2019 ◽  
Vol 11 (2) ◽  
pp. 687-703 ◽  
Author(s):  
Yilong Wang ◽  
Philippe Ciais ◽  
Grégoire Broquet ◽  
François-Marie Bréon ◽  
Tomohiro Oda ◽  
...  

Abstract. A large fraction of fossil fuel CO2 emissions emanate from “hotspots”, such as cities (where direct CO2 emissions related to fossil fuel combustion in transport, residential, commercial sectors, etc., excluding emissions from electricity-producing power plants, occur), isolated power plants, and manufacturing facilities, which cover a small fraction of the land surface. The coverage of all high-emitting cities and point sources across the globe by bottom-up inventories is far from complete, and for most of those covered, the uncertainties in CO2 emission estimates in bottom-up inventories are too large to allow continuous and rigorous assessment of emission changes (Gurney et al., 2019). Space-borne imagery of atmospheric CO2 has the potential to provide independent estimates of CO2 emissions from hotspots. But first, what a hotspot is needs to be defined for the purpose of satellite observations. The proposed space-borne imagers with global coverage planned for the coming decade have a pixel size on the order of a few square kilometers and a XCO2 accuracy and precision of <1 ppm for individual measurements of vertically integrated columns of dry-air mole fractions of CO2 (XCO2). This resolution and precision is insufficient to provide a cartography of emissions for each individual pixel. Rather, the integrated emission of diffuse emitting areas and intense point sources is sought. In this study, we characterize area and point fossil fuel CO2 emitting sources which generate coherent XCO2 plumes that may be observed from space. We characterize these emitting sources around the globe and they are referred to as “emission clumps” hereafter. An algorithm is proposed to identify emission clumps worldwide, based on the ODIAC global high-resolution 1 km fossil fuel emission data product. The clump algorithm selects the major urban areas from a GIS (geographic information system) file and two emission thresholds. The selected urban areas and a high emission threshold are used to identify clump cores such as inner city areas or large power plants. A low threshold and a random walker (RW) scheme are then used to aggregate all grid cells contiguous to cores in order to define a single clump. With our definition of the thresholds, which are appropriate for a space imagery with 0.5 ppm precision for a single XCO2 measurement, a total of 11 314 individual clumps, with 5088 area clumps, and 6226 point-source clumps (power plants) are identified. These clumps contribute 72 % of the global fossil fuel CO2 emissions according to the ODIAC inventory. The emission clumps is a new tool for comparing fossil fuel CO2 emissions from different inventories and objectively identifying emitting areas that have a potential to be detected by future global satellite imagery of XCO2. The emission clump data product is distributed from https://doi.org/10.6084/m9.figshare.7217726.v1.


Energy Policy ◽  
2011 ◽  
Vol 39 (2) ◽  
pp. 535-543 ◽  
Author(s):  
Simone Gingrich ◽  
Petra Kušková ◽  
Julia K. Steinberger

Author(s):  
Marco Gambini ◽  
Michela Vellini

In this paper two methodologies, able to avoid CO2 dispersion in atmosphere, have been analyzed: • treating exhaust gases in order to remove, liquefy and store the produced carbon dioxide; • de-carbonizing fossil fuels before using them in the combustion in order to inhibit completely carbon dioxide production. These methodologies have been implemented in advanced power plants based on gas turbine: a combined cycle power plant (CC), fed by natural gas, and an integrated gasification combined cycle (IGCC), fed by coal. The exhaust gas treatment is based on a chemical process of absorption, while the fossil fuel decarbonization is based on partial oxidation of methane, steam methane reforming and coal gasification. These systems require material and energetic integrations with the power sections and so the best interconnections must be investigated in order to obtain good overall performance. With reference to thermodynamic and economic performance, significant comparisons have been made between the above mentioned reference plants. An efficiency decrease and an increase in the cost of electricity have been obtained when power plants are equipped with systems able to reduce CO2 emissions. However, in order to obtain low CO2 emissions when coal is used, the coal decarbonization must be implemented: in this case it is possible to attain a global efficiency of about 38%, a specific emission of 0.1117 kg/kWh and an increase of kWh cost of about 32%. Vice versa, in order to obtain low CO2 emissions when natural gas is used, the exhaust gas treatment must be implemented: in this case it is possible to attain a global efficiency of about 50.7%, a specific emission of 0.0391 kg/kWh and an increase of kWh cost of about 15%. The clean use of coal seems to have good potential because it allows low energy penalizations (about 7.5 percentage points) and economic increases of about 32%. Because of the great availability, the homogeneous distribution and the low cost of this fuel, these results seem to be very interesting especially in the viewpoint of a transition towards the “hydrogen economy”, based, at least in the medium term, on fossil fuels.


Sign in / Sign up

Export Citation Format

Share Document