scholarly journals Marine boundary layer structure as observed by A-train satellites

2016 ◽  
Vol 16 (9) ◽  
pp. 5891-5903 ◽  
Author(s):  
Tao Luo ◽  
Zhien Wang ◽  
Damao Zhang ◽  
Bing Chen

Abstract. The marine boundary layer (MBL) structure is important to the marine low cloud processes, and the exchange of heat, momentum, and moisture between oceans and the low atmosphere. This study examines the MBL structure over the eastern Pacific region and further explores the controlling factors of MBL structure over the global oceans with a new 4-year satellite-based data set. The MBL top (boundary layer height, BLH) and the mixing layer height (MLH) were identified using the MBL aerosol lidar backscattering from the CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations). Results showed that the MBL is generally decoupled with MLH ∕ BLH ratio ranging from  ∼  0.5 to  ∼  0.8 over the eastern Pacific Ocean region. The MBL decoupling magnitude is mainly controlled by estimated inversion strength (EIS), which in turn controls the cloud top entrainment process. The systematic differences between drizzling and non-drizzling stratocumulus tops also show dependence on EIS. This may be related to the meso-scale circulations or gravity wave in the MBL. Further analysis indicates that the MBL shows a similar decoupled structure for clear-sky and cumulus-cloud-topped conditions, but is better mixed under stratiform cloud breakup and overcast conditions.

2013 ◽  
Vol 6 (5) ◽  
pp. 8311-8338
Author(s):  
T. Luo ◽  
R. Yuan ◽  
Z. Wang

Abstract. Atmospheric boundary layer (ABL) processes are important in climate, weather and air quality. A better understanding of the structure and the behavior of the ABL is required for understanding and modeling of the chemistry and dynamics of the atmosphere on all scales. Based on the systematic variations of ABL structures over different surfaces, different lidar-based methods were developed and evaluated to determine the boundary layer height and mixing layer height over land and ocean. With Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) micropulse lidar (MPL) and radiosonde measurements, diurnal and season cycles of atmospheric boundary layer depth and ABL vertical structure over ocean (TWP_C2 cite) and land (SGP_C1) are analyzed. The new methods are also applied to satellite lidar measurements. The derived global marine boundary layer structure database shows good agreement with marine ABL stratiform cloud top height.


2014 ◽  
Vol 7 (1) ◽  
pp. 173-182 ◽  
Author(s):  
T. Luo ◽  
R. Yuan ◽  
Z. Wang

Abstract. Atmospheric boundary layer (ABL) processes are important in climate, weather and air quality. A better understanding of the structure and the behavior of the ABL is required for understanding and modeling of the chemistry and dynamics of the atmosphere on all scales. Based on the systematic variations of the ABL structures over different surfaces, different lidar-based methods were developed and evaluated to determine the boundary layer height and mixing layer height over land and ocean. With Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) micropulse lidar (MPL) and radiosonde measurements, diurnal and season cycles of atmospheric boundary layer depth and the ABL vertical structure over ocean and land are analyzed. The new methods are then applied to satellite lidar measurements. The aerosol-derived global marine boundary layer heights are evaluated with marine ABL stratiform cloud top heights and results show a good agreement between them.


2015 ◽  
Vol 15 (23) ◽  
pp. 34063-34090 ◽  
Author(s):  
T. Luo ◽  
Z. Wang ◽  
D. Zhang

Abstract. The marine boundary layer (MBL) structure is important to the exchange of heat, momentum, and moisture between oceans and the low atmosphere and to the marine low cloud processes. This paper explores MBL structure over the eastern Pacific region with a new 4 year satellite-based dataset. The MBL aerosol lidar backscattering from the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) was used to identify the MBL top (BLH) and the mixing layer height (MLH). Results showed that MBL is generally decoupled with MLH / BLH ratio ranging from ∼ 0.5 to ∼ 0.8 and the MBL decoupling magnitude is mainly controlled by estimated inversion strength (EIS) that affects the cloud top entrainment process. The systematic differences between drizzling and non-drizzling stratocumulus tops, which may relate to the meso-scale circulations or gravity wave in MBL, also show dependence on EIS. Further analysis indicated that the MBL shows similar decoupled structure for clear sky and cumulus cloud-topped conditions, but is better mixed under stratiform cloud breakup and overcast conditions.


2020 ◽  
Vol 20 (6) ◽  
pp. 3415-3438 ◽  
Author(s):  
Hendrik Andersen ◽  
Jan Cermak ◽  
Julia Fuchs ◽  
Peter Knippertz ◽  
Marco Gaetani ◽  
...  

Abstract. Fog is a defining characteristic of the climate of the Namib Desert, and its water and nutrient input are important for local ecosystems. In part due to sparse observation data, the local mechanisms that lead to fog occurrence in the Namib are not yet fully understood, and to date, potential synoptic-scale controls have not been investigated. In this study, a recently established 14-year data set of satellite observations of fog and low clouds in the central Namib is analyzed in conjunction with reanalysis data in order to identify synoptic-scale patterns associated with fog and low-cloud variability in the central Namib during two seasons with different spatial fog occurrence patterns. It is found that during both seasons, mean sea level pressure and geopotential height at 500 hPa differ markedly between fog/low-cloud and clear days, with patterns indicating the presence of synoptic-scale disturbances on fog and low-cloud days. These regularly occurring disturbances increase the probability of fog and low-cloud occurrence in the central Namib in two main ways: (1) an anomalously dry free troposphere in the coastal region of the Namib leads to stronger longwave cooling of the marine boundary layer, increasing low-cloud cover, especially over the ocean where the anomaly is strongest; (2) local wind systems are modulated, leading to an onshore anomaly of marine boundary-layer air masses. This is consistent with air mass back trajectories and a principal component analysis of spatial wind patterns that point to advected marine boundary-layer air masses on fog and low-cloud days, whereas subsiding continental air masses dominate on clear days. Large-scale free-tropospheric moisture transport into southern Africa seems to be a key factor modulating the onshore advection of marine boundary-layer air masses during April, May, and June, as the associated increase in greenhouse gas warming and thus surface heating are observed to contribute to a continental heat low anomaly. A statistical model is trained to discriminate between fog/low-cloud and clear days based on information on large-scale dynamics. The model accurately predicts fog and low-cloud days, illustrating the importance of large-scale pressure modulation and advective processes. It can be concluded that regional fog in the Namib is predominantly of an advective nature and that fog and low-cloud cover is effectively maintained by increased cloud-top radiative cooling. Seasonally different manifestations of synoptic-scale disturbances act to modify its day-to-day variability and the balance of mechanisms leading to its formation and maintenance. The results are the basis for a new conceptual model of the synoptic-scale mechanisms that control fog and low-cloud variability in the Namib Desert and will guide future studies of coastal fog regimes.


2019 ◽  
Vol 11 (13) ◽  
pp. 1590 ◽  
Author(s):  
Ruijun Dang ◽  
Yi Yang ◽  
Xiao-Ming Hu ◽  
Zhiting Wang ◽  
Shuwen Zhang

The height of the atmospheric boundary layer (ABLH) or the mixing layer height (MLH) is a key parameter characterizing the planetary boundary layer, and the accurate estimation of that is critically important for boundary layer related studies, which include air quality forecasts and numerical weather prediction. Aerosol lidar is a powerful remote sensing instrument frequently used to retrieve the ABLH through detecting the vertical distributions of aerosol concentration. Presently available methods for ABLH determination from aerosol lidar are summarized in this review, including a lot of classical methodologies as well as some improved versions of them. Some new recently developed methods applying advanced techniques such as image edge detection, as well as some new methods based on multi-wavelength lidar systems, are also summarized. Although a lot of techniques have been proposed and have already given reasonable results in several studies, it is impossible to recommend a technique which is suitable in all atmospheric scenarios. More accurate instantaneous ABLH from robust techniques is required, which can be used to estimate or improve the boundary layer parameterization in the numerical model, or maybe possible to be assimilated into the weather and environment models to improve the simulation or forecast of weather and air quality in the future.


2011 ◽  
Vol 24 (13) ◽  
pp. 3190-3210 ◽  
Author(s):  
Lei Wang ◽  
Yuqing Wang ◽  
Axel Lauer ◽  
Shang-Ping Xie

Abstract The seasonal cycle of marine boundary layer (MBL) clouds over the eastern Pacific Ocean is studied with the International Pacific Research Center (IPRC) Regional Atmospheric Model (iRAM). The results show that the model is capable of simulating not only the overall seasonal cycle but also the spatial distribution, cloud regime transition, and vertical structure of MBL clouds over the eastern Pacific. Although the modeled MBL cloud layer is generally too high in altitude over the open ocean when compared with available satellite observations, the model simulated well the westward deepening and decoupling of the MBL, the rise in cloud base and cloud top of the low cloud decks off the Peru and California coasts, and the cloud regime transition from stratocumulus near the coast to trade cumulus farther to the west in both the southeast and northeast Pacific. In particular, the model reproduced major features of the seasonal variations in stratocumulus decks off the Peru and California coasts, including cloud amount, surface latent heat flux, subcloud-layer mixing, and the degree of MBL decoupling. In both observations and the model simulation, in the season with small low-level cloudiness, surface latent heat flux is large and the cloud base is high. This coincides with weak subcloud-layer mixing and strong entrainment at cloud top, characterized by a high degree of MBL decoupling, while the opposite is true for the season with large low-level cloudiness. This seasonal cycle in low-cloud properties resembles the downstream stratocumulus-to-cumulus transition of marine low clouds and can be explained by the “deepening–decoupling” mechanism proposed in previous studies. It is found that the seasonal variations of low-level clouds off the Peru coast are mainly caused by a large seasonal variability in sea surface temperature, whereas those off the California coast are largely attributed to the seasonal cycle in lower-tropospheric temperature.


2020 ◽  
Author(s):  
Jun Zou ◽  
Jianning Sun ◽  
Zixuan Xiang ◽  
Xiaomen Han ◽  
Qiuji Ding

<p>At the end of November 2018, a heavy air pollution event was recorded by many meteorological stations in the Yangtze River Delta (YRD), China. The local PM2.5 concentration exceeding to 200 µg m<sup>-3</sup>. This is the heaviest, longest and most widespread heavy-polluted weather in Jiangsu Province since 2018. Meanwhile, there has been severe foggy weather in Jiangsu Province, with visibility less than 200 meters in most parts of the province. In order to study the interaction between PM2.5 concentration and boundary layer height in the haze event, and the effect of fog on pollutant aggregation, the boundary layer structure of the continuous haze process was analyzed by using the SORPES Observation of Nanjing University's Xianlin Campus. The results of the analysis show that:<br>1, The PM2.5 concentration in the boundary layer is inversely correlated with the boundary layer height, the higher the PM2.5 concentration, the lower the boundary layer height during the day. By absorbing and scattering solar radiation, atmospheric aerosols affect the balance of surface energy and reduce the sensitive heat flux, thereby inhibiting the development of the boundary layer. While inhibited development of the boundary layer will limit the diffusion of atmospheric aerosols, thereby increasing the concentration of atmospheric aerosols in the boundary layer. In addition, nocturnal atmospheric aerosols absorb heat, leading to strong grounding inversion temperature the next day, further inhibiting the development of the daytime boundary layer. <br>2, The fog-top inversion is very strong, far stronger than the inversion caused by atmospheric aerosols. Therefore, the heights of the boundary layer of fog days are much lower than that of non-fog days under the same pollution conditions.<br>3, During the fog, the PM2.5 concentration significantly reduced. And after the fog dissipated, due to the sun, the air moisture evaporation, PM2.5 concentration quickly reverted to the pre-fog state. Fog has limited wet removal of PM2.5.<br>4, Fog can inhibit the development of the boundary layer, with the continuation of the fog process, the pollution in the boundary layer continues to increase. At the same time, due to the inhibition of the development of the boundary layer, the diffusion of water vapor in the air is also affected, resulting in the boundary layer water vapor content is always in a high state, thus promoting the production of fog.</p>


2010 ◽  
Vol 49 (9) ◽  
pp. 1845-1858 ◽  
Author(s):  
Johannes Karlsson ◽  
Gunilla Svensson ◽  
Sambingo Cardoso ◽  
Joao Teixeira ◽  
Susan Paradise

Abstract In this study, the mean and variability of boundary layer height (BLH) are analyzed along a transect in the eastern Pacific Ocean for the summer of 2003 using BLH estimates based on the height of the main relative humidity (RH) inversion and the height of low cloud tops (CTH). The observations and the regional and global model data have been prepared in the context of the Global Energy and Water Cycle Experiment (GEWEX) Cloud System Study (GCSS) Pacific Cross-Section Intercomparison (GPCI). The GPCI transect covers the transition from a stratocumulus-topped marine boundary layer (MBL) off the coast of California to a trade cumulus–topped, less-well-defined, MBL, and finally to the deep-convection regions in the intertropical convergence zone (ITCZ). The Atmospheric Infrared Sounder (AIRS) and the Multiangle Imaging Spectroradiometer (MISR) have been used to derive observational records of the two BLH estimates. Analyses from the ECMWF are also used in the study. Both BLH estimates in the models, the ECMWF analysis, and the observations agree on a southward vertical growth of the MBL along the GPCI transect in the stratocumulus region. Away from the region typically associated with extensive cloud cover, the two BLH estimates depict different evolutions of the MBL. In most models, the height of the main RH inversion decreases southward from ∼18°N, reaching a minimum at the ITCZ, whereas the height of the RH inversion in the ECMWF analysis and a few of the models is fairly constant all the way to the ITCZ. As a result of insufficient vertical resolution of the gridded dataset, the AIRS data only manage to reproduce the initial growth of the BLH. The median-model CTH increases from the stratocumulus-topped MBL to the ITCZ. In contrast, the observed MISR CTHs decrease southward from 20°N to the ITCZ, possibly indicative of the fact that in these regions MISR manages to capture a variety of cloud tops with a mean that is below the subsidence inversion while the models and the ECMWF analysis mainly simulate CTHs corresponding to the height of the subsidence inversion. In most models and in the ECMWF analysis, the height of the main RH inversion and the CTH tend to coincide in the northern part of the GPCI transect. In the regions associated with trade cumuli and deep convection there is a more ambiguous relation between the two BLH estimates. In this region, most of the models place the CTH above the main RH inversion. The ECMWF analysis shows a good agreement between the BLH estimates throughout the transect.


2021 ◽  
Vol 14 (11) ◽  
pp. 7341-7353
Author(s):  
Anna Franck ◽  
Dmitri Moisseev ◽  
Ville Vakkari ◽  
Matti Leskinen ◽  
Janne Lampilahti ◽  
...  

Abstract. Knowledge of the atmospheric boundary layer state and evolution is important for understanding air pollution and low-level cloud development, among other things. There are a number of instruments and methods that are currently used to estimate boundary layer height (BLH). However, no single instrument is capable of providing BLH measurements in all weather conditions. We proposed a method to derive a daytime convective BLH using clear air echoes in radar observations and investigated the consistency of these retrievals between different radar frequencies. We utilized data from three vertically pointing radars that are available at the SMEAR II station in Finland, i.e. the C band (5 GHz), Ka band (35 GHz) and W band (94 GHz). The Ka- or W-band cloud radars are an integral part of cloud profiling stations of pan-European Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS). Our method will be utilized at ACTRIS stations to serve as an additional estimate of the BLH during summer months. During this period, insects and Bragg scatter are often responsible for clear air echoes recorded by weather and cloud radars. To retrieve a BLH, we suggested a mechanism to separate passive and independently flying insects that works for all analysed frequency bands. At the lower frequency (the C band) insect scattering has been separated from Bragg scattering using a combination of the radar reflectivity factor and linear depolarization ratio. Retrieved values of the BLH from all radars are in a good agreement when compared to the BLH obtained with the co-located HALO Doppler lidar and ERA5 reanalysis data set. Our method showed some underestimation of the BLH after nighttime heavy precipitation yet demonstrated a potential to serve as a reliable method to obtain a BLH during clear-sky days. Additionally, the entrainment zone was observed by the C-band radar above the CBL in the form of a Bragg scatter layer. Aircraft observations of vertical profiles of potential temperature and water vapour concentration, collected in the vicinity of the radar, demonstrated some agreement with the Bragg scatter layer.


Sign in / Sign up

Export Citation Format

Share Document