scholarly journals Evolution of the eastward shift in the quasi-stationary minimum of the Antarctic total ozone column

2017 ◽  
Vol 17 (3) ◽  
pp. 1741-1758 ◽  
Author(s):  
Asen Grytsai ◽  
Andrew Klekociuk ◽  
Gennadi Milinevsky ◽  
Oleksandr Evtushevsky ◽  
Kane Stone

Abstract. The quasi-stationary pattern of the Antarctic total ozone has changed during the last 4 decades, showing an eastward shift in the zonal ozone minimum. In this work, the association between the longitudinal shift of the zonal ozone minimum and changes in meteorological fields in austral spring (September–November) for 1979–2014 is analyzed using ERA-Interim and NCEP–NCAR reanalyses. Regressive, correlative and anomaly composite analyses are applied to reanalysis data. Patterns of the Southern Annular Mode and quasi-stationary zonal waves 1 and 3 in the meteorological fields show relationships with interannual variability in the longitude of the zonal ozone minimum. On decadal timescales, consistent longitudinal shifts of the zonal ozone minimum and zonal wave 3 pattern in the middle-troposphere temperature at the southern midlatitudes are shown. Attribution runs of the chemistry–climate version of the Australian Community Climate and Earth System Simulator (ACCESS-CCM) model suggest that long-term shifts of the zonal ozone minimum are separately contributed by changes in ozone-depleting substances and greenhouse gases. As is known, Antarctic ozone depletion in spring is strongly projected on the Southern Annular Mode in summer and impacts summertime surface climate across the Southern Hemisphere. The results of this study suggest that changes in zonal ozone asymmetry accompanying ozone depletion could be associated with regional climate changes in the Southern Hemisphere in spring.

2016 ◽  
Author(s):  
Asen Grytsai ◽  
Gennadi Milinevsky ◽  
Andrew Klekociuk ◽  
Oleksandr Evtushevsky

Abstract. The quasi-stationary pattern of the Antarctic total ozone has changed during the last four decades, demonstrating an eastward shift in the zonal ozone minimum. In this work, the association between the longitudinal shift of the zonal ozone minimum and changes in meteorological fields in austral spring (September–November) for 1979–2014 is analyzed. Regressive, correlative and anomaly composite analyses are applied to reanalysis data. Patterns of the Southern Annular Mode and quasi-stationary zonal waves 1 and 3 in the meteorological fields show relationships with interannual variability in the longitude of the zonal ozone minimum. On decadal time scales, consistent longitudinal shifts of the zonal ozone minimum and zonal wave 3 pattern in the middle troposphere temperature at the southern mid-latitudes are shown. As known, Antarctic ozone depletion in spring is strongly projected on the Southern Annular Mode in summer and impacts tropospheric climate. The results of this study suggest that changes in zonal ozone asymmetry accompanying the ozone depletion could be associated with regional climate changes in the Southern Hemisphere in spring.


2014 ◽  
Vol 27 (19) ◽  
pp. 7462-7474 ◽  
Author(s):  
William J. M. Seviour ◽  
Steven C. Hardiman ◽  
Lesley J. Gray ◽  
Neal Butchart ◽  
Craig MacLachlan ◽  
...  

Abstract Using a set of seasonal hindcast simulations produced by the Met Office Global Seasonal Forecast System, version 5 (GloSea5), significant predictability of the southern annular mode (SAM) is demonstrated during the austral spring. The correlation of the September–November mean SAM with observed values is 0.64, which is statistically significant at the 95% confidence level [confidence interval: (0.18, 0.92)], and is similar to that found recently for the North Atlantic Oscillation in the same system. Significant skill is also found in the prediction of the strength of the Antarctic stratospheric polar vortex at 1 month average lead times. Because of the observed strong correlation between interannual variability in the strength of the Antarctic stratospheric circulation and ozone concentrations, it is possible to make skillful predictions of Antarctic column ozone amounts. By studying the variation of forecast skill with time and height, it is shown that skillful predictions of the SAM are significantly influenced by stratospheric anomalies that descend with time and are coupled with the troposphere. This effect allows skillful statistical forecasts of the October mean SAM to be produced based only on midstratosphere anomalies on 1 August. Together, these results both demonstrate a significant advance in the skill of seasonal forecasts of the Southern Hemisphere and highlight the importance of accurate modeling and observation of the stratosphere in producing long-range forecasts.


2009 ◽  
Vol 22 (22) ◽  
pp. 6142-6148 ◽  
Author(s):  
Gabriel Silvestri ◽  
Carolina Vera

Abstract The temporal stability of the southern annular mode (SAM) impacts on Southern Hemisphere climate during austral spring is analyzed. Results show changes in the typical hemispheric circulation pattern associated with SAM, particularly over South America and Australia, between the 1960s–70s and 1980s–90s. In the first decades, the SAM positive phase is associated with an anomalous anticyclonic circulation developed in the southwestern subtropical Atlantic that enhances moisture advection and promotes precipitation increase over southeastern South America (SESA). On the other hand, during the last decades the anticyclonic anomaly induced by the SAM’s positive phase covers most of southern South America and the adjacent Atlantic, producing weakened moisture convergence and decreased precipitation over SESA as well as positive temperature anomaly advection over southern South America. Some stations in the Australia–New Zealand sector and Africa exhibit significant correlations between the SAM and precipitation anomalies in both or one of the subperiods, but they do not characterize a consistent area in which the SAM signal can be certainly determined. Significant changes of SAM influence on temperature anomalies on multidecadal time scales are observed elsewhere. Particularly over the Australia–New Zealand sector, significant positive correlations during the first decades become insignificant or even negative in the later period, whereas changes of opposite sign occur in the Antarctic Peninsula between both subperiods.


2021 ◽  
Vol 13 (8) ◽  
pp. 1594
Author(s):  
Songkang Kim ◽  
Sang-Jong Park ◽  
Hana Lee ◽  
Dha Hyun Ahn ◽  
Yeonjin Jung ◽  
...  

The ground-based ozone observation instrument, Brewer spectrophotometer (Brewer), was used to evaluate the quality of the total ozone column (TOC) produced by multiple polar-orbit satellite measurements at three stations in Antarctica (King Sejong, Jang Bogo, and Zhongshan stations). While all satellite TOCs showed high correlations with Brewer TOCs (R = ~0.8 to 0.9), there are some TOC differences among satellite data in austral spring, which is mainly attributed to the bias of Atmospheric Infrared Sounder (AIRS) TOC. The quality of satellite TOCs is consistent between Level 2 and 3 data, implying that “which satellite TOC is used” can induce larger uncertainty than “which spatial resolution is used” for the investigation of the Antarctic TOC pattern. Additionally, the quality of satellite TOC is regionally different (e.g., OMI TOC is a little higher at the King Sejong station, but lower at the Zhongshan station than the Brewer TOC). Thus, it seems necessary to consider the difference of multiple satellite data for better assessing the spatiotemporal pattern of Antarctic TOC.


2010 ◽  
Vol 67 (9) ◽  
pp. 2854-2870 ◽  
Author(s):  
Tingting Gong ◽  
Steven B. Feldstein ◽  
Dehai Luo

Abstract This study examines the relationship between intraseasonal southern annular mode (SAM) events and the El Niño–Southern Oscillation (ENSO) using daily 40-yr ECMWF Re-Analysis (ERA-40) data. The data coverage spans the years 1979–2002, for the austral spring and summer seasons. The focus of this study is on the question of why positive SAM events dominate during La Niña and negative SAM events during El Niño. A composite analysis is performed on the zonal-mean zonal wind, Eliassen–Palm fluxes, and two diagnostic variables: the meridional potential vorticity gradient, a zonal-mean quantity that is used to estimate the likelihood of wave breaking, and the wave breaking index (WBI), which is used to evaluate the strength of the wave breaking. The results of this investigation suggest that the background zonal-mean flow associated with La Niña (El Niño) is preconditioned for strong (weak) anticyclonic wave breaking on the equatorward side of the eddy-driven jet, the type of wave breaking that is found to drive positive (negative) SAM events. A probability density function analysis of the WBI, for both La Niña and El Niño, indicates that strong anticyclonic wave breaking takes place much more frequently during La Niña and weak anticyclonic wave breaking during El Niño. It is suggested that these wave breaking characteristics, and their dependency on the background flow, can explain the strong preference for SAM events of one phase during ENSO. The analysis also shows that austral spring SAM events that coincide with ENSO are preceded by strong stratospheric SAM anomalies and then are followed by a prolonged period of wave breaking that lasts for approximately 30 days. These findings suggest that the ENSO background flow also plays a role in the excitation of stratospheric SAM anomalies and that the presence of these stratospheric SAM anomalies in turn excites and then maintains the tropospheric SAM anomalies via a positive eddy feedback.


2022 ◽  
pp. 1-63

Abstract Motivated by the strong Antarctic sudden stratospheric warming (SSW) in 2019, a survey on the similar Antarctic weak polar events (WPV) is presented, including their life cycle, dynamics, seasonality, and climatic impacts. The Antarctic WPVs have a frequency of about four events per decade, with the 2002 event being the only major SSW. They show a similar life cycle to the SSWs in the Northern Hemisphere but have a longer duration. They are primarily driven by enhanced upward-propagating wavenumber 1 in the presence of a preconditioned polar stratosphere, i.e., a weaker and more contracted Antarctic stratospheric polar vortex. Antarctic WPVs occur mainly in the austral spring. Their early occurrence is preceded by an easterly anomaly in the middle and upper equatorial stratosphere besides the preconditioned polar stratosphere. The Antarctic WPVs increase the ozone concentration in the polar region and are associated with an advanced seasonal transition of the stratospheric polar vortex by about one week. Their frequency doubles after 2000 and is closely related to the advanced Antarctic stratospheric final warming in recent decades. The WPV-resultant negative phase of the southern annular mode descends to the troposphere and persists for about three months, leading to persistent hemispheric scale temperature and precipitation anomalies.


2006 ◽  
Vol 33 (23) ◽  
Author(s):  
N. P. Gillett ◽  
T. D. Kell ◽  
P. D. Jones

2016 ◽  
Vol 43 (13) ◽  
pp. 7160-7167 ◽  
Author(s):  
Eun-Pa Lim ◽  
Harry H. Hendon ◽  
Julie M. Arblaster ◽  
Francois Delage ◽  
Hanh Nguyen ◽  
...  

2005 ◽  
Vol 62 (6) ◽  
pp. 1947-1961 ◽  
Author(s):  
Harun A. Rashid ◽  
Ian Simmonds

Abstract The southern annular mode is the leading mode of Southern Hemisphere circulation variability, the temporal evolution of which is characterized by large amplitudes and significant persistence. Previous investigators have suggested a positive feedback mechanism that explains some of this low-frequency variance. Here, a mechanism is proposed, involving transient nonmodal growths of the anomalies, that is at least as effective as the positive feedback mechanism in increasing the low-frequency variance of the southern annular mode. Using the vector autoregressive modeling technique, a number of linear inverse models of southern annular mode variability from National Centers for Environmental Prediction–Department of Energy (NCEP–DOE) Reanalysis 2 is derived. These models are then analyzed applying the ideas of the generalized stability theory. It is found that, as a consequence of the nonnormality of the system matrices, a significant increase in the low-frequency variance of the southern annular mode occurs through optimal nonmodal growth of the zonal wind anomalies. The nonnormality arises mainly from the relative dominance of the eddy forcing, while the nonmodal growth is caused by the interference of the nonorthogonal eigenvectors of the nonnormal system matrix. These results are demonstrated first in a simple model that retains only the two leading modes of the zonally averaged zonal wind and eddy-forcing variability, and then in a more general model that includes all the important modes. Using the more general model the authors have determined, among other things, the optimal initial perturbation and the time scale over which it experiences the maximum nonmodal growth to evolve into the pattern associated with the southern annular mode.


2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Klaus Dethloff ◽  
Ksenia Glushak ◽  
Annette Rinke ◽  
Dörthe Handorf

The regional climate model HIRHAM has been applied to Antarctica driven at the lateral and lower boundaries by European Reanalysis data ERA-40 for the period 1958–1998. Simulations over 4 decades, carried out with a horizontal resolution of 50 km, deliver a realistic simulation of the Antarctic atmospheric circulation, synoptic-scale pressure systems, and the spatial distribution of precipitation minus sublimation (P-E) structures. The simulated P-E pattern is in qualitative agreement with glaciological estimates. The estimated (P-E) trends demonstrate surfacemass accumulation increase at the West Antarctic coasts and reductions in parts of East Antarctica. The influence of the Antarctic Oscillation (AAO) on the near-surface climate and the surface mass accumulation over Antarctica have been investigated on the basis of ERA-40 data and HIRHAM simulations. It is shown that the regional accumulation changes are largely driven by changes in the transient activity around the Antarctic coasts due to the varying AAO phases. During positive AAO, more transient pressure systems travelling towards the continent, and Western Antarctica and parts of South-Eastern Antarctica gain more precipitation and mass. Over central Antarctica the prevailing anticyclone causes a strengthening of polar desertification connected with a reduced surface mass balance in the northern part of East Antarctica.


Sign in / Sign up

Export Citation Format

Share Document