scholarly journals Effects of the Wegener–Bergeron–Findeisen process on global black carbon distribution

2017 ◽  
Vol 17 (12) ◽  
pp. 7459-7479 ◽  
Author(s):  
Ling Qi ◽  
Qinbin Li ◽  
Cenlin He ◽  
Xin Wang ◽  
Jianping Huang

Abstract. We systematically investigate the effects of Wegener–Bergeron–Findeisen process (hereafter WBF) on black carbon (BC) scavenging efficiency, surface BCair, deposition flux, concentration in snow (BCsnow, ng g−1), and washout ratio using a global 3-D chemical transport model (GEOS-Chem). We differentiate riming- versus WBF-dominated in-cloud scavenging based on liquid water content (LWC) and temperature. Specifically, we implement an implied WBF parameterization using either temperature or ice mass fraction (IMF) in mixed-phase clouds based on field measurements. We find that at Jungfraujoch, Switzerland, and Abisko, Sweden, where WBF dominates in-cloud scavenging, including the WBF effect strongly reduces the discrepancies of simulated BC scavenging efficiency and washout ratio against observations (from a factor of 3 to 10 % and from a factor of 4–5 to a factor of 2). However, at Zeppelin, Norway, where riming dominates, simulation of BC scavenging efficiency, BCair, and washout ratio become worse (relative to observations) when WBF is included. There is thus an urgent need for extensive observations to distinguish and characterize riming- versus WBF-dominated aerosol scavenging in mixed-phase clouds and the associated BC scavenging efficiency. Our model results show that including the WBF effect lowers global BC scavenging efficiency, with a higher reduction at higher latitudes (8 % in the tropics and up to 76 % in the Arctic). The resulting annual mean BCair increases by up to 156 % at high altitudes and at northern high latitudes because of lower temperature and higher IMF. Overall, WBF halves the model–observation discrepancy (from −65 to −30 %) of BCair across North America, Europe, China and the Arctic. Globally WBF increases BC burden from 0.22 to 0.29–0.35 mg m−2 yr−1, which partially explains the gap between observed and previous model-simulated BC burdens over land. In addition, WBF significantly increases BC lifetime from 5.7 to  ∼  8 days. Additionally, WBF results in a significant redistribution of BC deposition in source and remote regions. Specifically, it lowers BC wet deposition (by 37–63 % at northern mid-latitudes and by 21–29 % in the Arctic), while it increases dry deposition (by 3–16 % at mid-latitudes and by 81–159 % in the Arctic). The resulting total BC deposition is lower at mid-latitudes (by 12–34 %) but higher in the Arctic (by 2–29 %). We find that WBF decreases BCsnow at mid-latitudes (by  ∼  15 %) but increases it in the Arctic (by 26 %) while improving model comparisons with observations. In addition, WBF dramatically reduces the model–observation discrepancy of washout ratios in winter (from a factor of 16 to 4). The remaining discrepancies in BCair, BCsnow and BC washout ratios suggest that in-cloud removal in mixed-phased clouds is likely still excessive over land.

2016 ◽  
Author(s):  
Ling Qi ◽  
Qinbin Li ◽  
Cenlin He ◽  
Xin Wang ◽  
Jianping Huang

Abstract. We systematically investigate the effects of Wegener-Bergeron-Findeisen (WBF) on BC scavenging efficiency, surface BCair, deposition flux, concentration in snow (BCsnow, ng g−1), and washout ratio using a global 3D chemical transport model (GEOS-Chem). We differentiate riming- versus WBF-dominated in-cloud scavenging based on liquid water content (LWC) and temperature. Specifically, we relate WBF to either temperature or ice mass fraction (IMF) in mixed-phase clouds. We find that at Jungfraujoch, Switzerland and Abisko, Sweden, where WBF dominates, the discrepancies of simulated BC scavenging efficiency and washout ratio are significantly reduced (from a factor of 3 to 10 % and from a factor of 4–5 to a factor of two). However, at Zeppelin, Norway, where riming dominates, simulation of BC scavenging efficiency, BCair, and washout ratio become worse (relative to observations) when WBF is included. There is thus an urgent need for extensive observations to distinguish and characterize riming- versus WBF-dominated aerosol scavenging in mixed-phase clouds and the associated BC scavenging efficiency. We find the reduction resulting from WBF to global BC scavenging efficiency varies substantially, from 8 % in the tropics to 76 % in the Arctic. The resulting annual mean BCair increases by up to 156 % at high altitudes and at northern high latitudes because of lower temperature and higher IMF. Overall, WBF halves the model-observation discrepancy (from −65 % to −30 %) of BCair across North America, Europe, China and the Arctic. Globally WBF increases BC burden from 0.22 to 0.29–0.35 mg m−2 yr−1, which partially explains the gap between observed and previous model simulated BC burdens over land. In addition, WBF significantly increases BC lifetime from 5.7 days to ~8 days. Additionally, WBF results in a significant redistribution of BC deposition in source and remote regions. Specifically, it lowers BC wet deposition (by 37–63 % at northern mid-latitudes and by 21–29 % in the Arctic) while increases dry deposition (by 3–16 % at mid-latitudes and by 81–159 % in the Arctic). The resulting total BC deposition is lower at mid-latitudes (by 12–34 %) but higher in the Arctic (by 2–29 %). We find that WBF decreases BCsnow at mid-latitudes (by ~15 %) but increases it in the Arctic (by 26 %) while improving model comparisons with observations. In addition, WBF dramatically reduces the model-observation discrepancy of washout ratios in winter (from a factor of 16 to 4). The remaining discrepancies in BCair, BCsnow and BC washout ratios suggest that in-cloud removal in mixed-phased clouds is likely still excessive over land.


2016 ◽  
Author(s):  
Ling Qi ◽  
Qinbin Li ◽  
Yingrui Li ◽  
Cenlin He

Abstract. We investigate the sensitivity of black carbon (BC) in the Arctic, including BC in snow (BCsnow, ng g−1) and surface air (BCair, μg m−3), to emissions, dry deposition and wet scavenging using a global 3-D chemical transport model (CTM) GEOS-Chem. We find that the model underestimates BCsnow in the Arctic by 40 % on average (median = 11.8 ng g−1). Natural gas flaring substantially increases total BC emissions in the Arctic (by ~ 70 %). The flaring emissions lead to up to 49 % increases (0.1–8.5 ng g−1) in Arctic BCsnow, dramatically improving model comparison with observations (50 % reduction in discrepancy) near flaring source regions (Western Extreme North of Russia). Ample observations suggest that BC dry deposition velocities over snow and ice in current CTMs (0.03 cm s−1 in GEOS-Chem) are exceedingly small. We apply the resistance-in-series method to compute the dry deposition velocity that varies with local meteorological and surface conditions. The resulting velocity is significantly larger and varies by a factor of eight in the Arctic (0.03–0.24 cm s−1), increases the fraction of dry to total BC deposition (16 % to 25 %), yet leaves the total BC deposition and BCsnow in the Arctic unchanged. This is largely explained by the offsetting higher dry and lower wet deposition fluxes. Additionally, we account for the effect of the Wegener-Bergeron-Findeisen (WBF) process in mixed-phase clouds, which releases BC particles from condensed phases (water drops and ice crystals) back to the interstitial air and thereby substantially reduces the scavenging efficiency of BC (by 43–76 % in the Arctic). The resulting BCsnow is up to 80 % higher, BC loading is considerably larger (from 0.25 to 0.43 mg  m−2), and BC lifetime is markedly prolonged (from 9 to 16 days) in the Arctic. Over all, flaring emissions increase BCair in the Arctic (by ~ 20 ng m−3), the updated dry deposition velocity more than halves BCair (by ~ 20 ng  m−3), and the WBF effect increases BCair by 25–70 % during winter and early spring. The resulting model simulation of BCsnow is substantially improved (within 10 % of the observations) and the discrepancies of BCair are much smaller during snow season at Barrow, Alert and Summit (from −67 %–−47 % to −46 %–3 %). Our results point toward an urgent need for better characterization of flaring emissions of BC (e.g. the emission factors, temporal and spatial distribution), extensive measurements of both the dry deposition of BC over snow and ice, and the scavenging efficiency of BC in mixed-phase clouds.


2017 ◽  
Vol 17 (2) ◽  
pp. 1037-1059 ◽  
Author(s):  
Ling Qi ◽  
Qinbin Li ◽  
Yinrui Li ◽  
Cenlin He

Abstract. We investigate the sensitivity of black carbon (BC) in the Arctic, including BC concentration in snow (BCsnow, ng g−1) and surface air (BCair, ng m−3), as well as emissions, dry deposition, and wet scavenging using the global three-dimensional (3-D) chemical transport model (CTM) GEOS-Chem. We find that the model underestimates BCsnow in the Arctic by 40 % on average (median  =  11.8 ng g−1). Natural gas flaring substantially increases total BC emissions in the Arctic (by ∼ 70 %). The flaring emissions lead to up to 49 % increases (0.1–8.5 ng g−1) in Arctic BCsnow, dramatically improving model comparison with observations (50 % reduction in discrepancy) near flaring source regions (the western side of the extreme north of Russia). Ample observations suggest that BC dry deposition velocities over snow and ice in current CTMs (0.03 cm s−1 in the GEOS-Chem) are too small. We apply the resistance-in-series method to compute a dry deposition velocity (vd) that varies with local meteorological and surface conditions. The resulting velocity is significantly larger and varies by a factor of 8 in the Arctic (0.03–0.24 cm s−1), which increases the fraction of dry to total BC deposition (16 to 25 %) yet leaves the total BC deposition and BCsnow in the Arctic unchanged. This is largely explained by the offsetting higher dry and lower wet deposition fluxes. Additionally, we account for the effect of the Wegener–Bergeron–Findeisen (WBF) process in mixed-phase clouds, which releases BC particles from condensed phases (water drops and ice crystals) back to the interstitial air and thereby substantially reduces the scavenging efficiency of clouds for BC (by 43–76 % in the Arctic). The resulting BCsnow is up to 80 % higher, BC loading is considerably larger (from 0.25 to 0.43 mg m−2), and BC lifetime is markedly prolonged (from 9 to 16 days) in the Arctic. Overall, flaring emissions increase BCair in the Arctic (by ∼ 20 ng m−3), the updated vd more than halves BCair (by ∼ 20 ng m−3), and the WBF effect increases BCair by 25–70 % during winter and early spring. The resulting model simulation of BCsnow is substantially improved (within 10 % of the observations) and the discrepancies of BCair are much smaller during the snow season at Barrow, Alert, and Summit (from −67–−47 % to −46–3 %). Our results point toward an urgent need for better characterization of flaring emissions of BC (e.g., the emission factors, temporal, and spatial distribution), extensive measurements of both the dry deposition of BC over snow and ice, and the scavenging efficiency of BC in mixed-phase clouds. In addition, we find that the poorly constrained precipitation in the Arctic may introduce large uncertainties in estimating BCsnow. Doubling precipitation introduces a positive bias approximately as large as the overall effects of flaring emissions and the WBF effect; halving precipitation produces a similarly large negative bias.


2017 ◽  
Vol 17 (20) ◽  
pp. 12779-12795 ◽  
Author(s):  
Meri M. Ruppel ◽  
Joana Soares ◽  
Jean-Charles Gallet ◽  
Elisabeth Isaksson ◽  
Tõnu Martma ◽  
...  

Abstract. The climate impact of black carbon (BC) is notably amplified in the Arctic by its deposition, which causes albedo decrease and subsequent earlier snow and ice spring melt. To comprehensively assess the climate impact of BC in the Arctic, information on both atmospheric BC concentrations and deposition is essential. Currently, Arctic BC deposition data are very scarce, while atmospheric BC concentrations have been shown to generally decrease since the 1990s. However, a 300-year Svalbard ice core showed a distinct increase in EC (elemental carbon, proxy for BC) deposition from 1970 to 2004 contradicting atmospheric measurements and modelling studies. Here, our objective was to decipher whether this increase has continued in the 21st century and to investigate the drivers of the observed EC deposition trends. For this, a shallow firn core was collected from the same Svalbard glacier, and a regional-to-meso-scale chemical transport model (SILAM) was run from 1980 to 2015. The ice and firn core data indicate peaking EC deposition values at the end of the 1990s and lower values thereafter. The modelled BC deposition results generally support the observed glacier EC variations. However, the ice and firn core results clearly deviate from both measured and modelled atmospheric BC concentration trends, and the modelled BC deposition trend shows variations seemingly independent from BC emission or atmospheric BC concentration trends. Furthermore, according to the model ca. 99 % BC mass is wet-deposited at this Svalbard glacier, indicating that meteorological processes such as precipitation and scavenging efficiency have most likely a stronger influence on the BC deposition trend than BC emission or atmospheric concentration trends. BC emission source sectors contribute differently to the modelled atmospheric BC concentrations and BC deposition, which further supports our conclusion that different processes affect atmospheric BC concentration and deposition trends. Consequently, Arctic BC deposition trends should not directly be inferred based on atmospheric BC measurements, and more observational BC deposition data are required to assess the climate impact of BC in Arctic snow.


2017 ◽  
Vol 17 (15) ◽  
pp. 9697-9716 ◽  
Author(s):  
Ling Qi ◽  
Qinbin Li ◽  
Daven K. Henze ◽  
Hsien-Liang Tseng ◽  
Cenlin He

Abstract. We quantify source contributions to springtime (April 2008) surface black carbon (BC) in the Arctic by interpreting surface observations of BC at five receptor sites (Denali, Barrow, Alert, Zeppelin, and Summit) using a global chemical transport model (GEOS-Chem) and its adjoint. Contributions to BC at Barrow, Alert, and Zeppelin are dominated by Asian anthropogenic sources (40–43 %) before 18 April and by Siberian open biomass burning emissions (29–41 %) afterward. In contrast, Summit, a mostly free tropospheric site, has predominantly an Asian anthropogenic source contribution (24–68 %, with an average of 45 %). We compute the adjoint sensitivity of BC concentrations at the five sites during a pollution episode (20–25 April) to global emissions from 1 March to 25 April. The associated contributions are the combined results of these sensitivities and BC emissions. Local and regional anthropogenic sources in Alaska are the largest anthropogenic sources of BC at Denali (63 % of total anthropogenic contributions), and natural gas flaring emissions in the western extreme north of Russia (WENR) are the largest anthropogenic sources of BC at Zeppelin (26 %) and Alert (13 %). We find that long-range transport of emissions from Beijing–Tianjin–Hebei (also known as Jing–Jin–Ji), the biggest urbanized region in northern China, contribute significantly (∼ 10 %) to surface BC across the Arctic. On average, it takes ∼ 12 days for Asian anthropogenic emissions and Siberian biomass burning emissions to reach the Arctic lower troposphere, supporting earlier studies. Natural gas flaring emissions from the WENR reach Zeppelin in about a week. We find that episodic transport events dominate BC at Denali (87 %), a site outside the Arctic front, which is a strong transport barrier. The relative contribution of these events to surface BC within the polar dome is much smaller (∼ 50 % at Barrow and Zeppelin and ∼ 10 % at Alert). The large contributions from Asian anthropogenic sources are predominately in the form of chronic pollution (∼ 40 % at Barrow, 65 % at Alert, and 57 % at Zeppelin) on about a 1-month timescale. As such, it is likely that previous studies using 5- or 10-day trajectory analyses strongly underestimated the contribution from Asia to surface BC in the Arctic.


2017 ◽  
Author(s):  
Meri M. Ruppel ◽  
Joana Soares ◽  
Jean-Charles Gallet ◽  
Elisabeth Isaksson ◽  
Tõnu Martma ◽  
...  

Abstract. The climate impact of black carbon (BC) is notably amplified in the Arctic by its deposition that causes albedo decrease and subsequent earlier snow and ice spring melt. To comprehensively assess the climate impact of BC in the Arctic, information on both atmospheric BC concentrations and deposition are essential. Currently, Arctic BC deposition data are very scarce, while atmospheric BC concentrations have been shown to generally decrease since the 1990s. However, a 300-year Svalbard ice core showed a distinct increase in EC (elemental carbon, proxy for BC) deposition from 1970 to 2004 contradicting atmospheric measurements and modelling studies. Here, our objective was to decipher whether this increase has continued in the 21st century, and to investigate the drivers of the observed EC deposition trends. For this, a shallow firn core was collected from the same Svalbard glacier, and a regional-to-meso-scale chemical transport model (SILAM) was run from 1980 to 2015. The ice and firn core data indicate peaking EC deposition values at the end of the 1990s, and lower values thereafter. The modelled BC deposition results generally support the observed glacier EC variations. However, the ice and firn core results clearly deviate from both measured and modelled atmospheric BC concentration trends, and the modelled BC deposition trend shows variations seemingly independent from BC emission or atmospheric BC concentration trends. Furthermore, ca. 99 % BC mass is wet-deposited at this Svalbard glacier, indicating that meteorological processes such as precipitation and scavenging efficiency have most likely a stronger influence on the BC deposition trend than BC emission or atmospheric concentration trends. BC emission source sectors contribute differently to the modelled atmospheric BC concentrations and BC deposition, which further supports our conclusion that different processes affect atmospheric BC concentration and deposition trends. Consequently, Arctic BC deposition trends should not directly be inferred based on atmospheric BC measurements, and more observational BC deposition data are required to assess the climate impact of BC in Arctic snow.


2019 ◽  
Author(s):  
Ling Qi ◽  
Shuxiao Wang

Abstract. We identify sources (fossil fuel versus biomass burning) of black carbon (BC) in the atmosphere and in deposition using a global 3D chemical transport model GEOS-Chem. We validate the simulated sources against carbon isotope measurements of BC around the globe and find that the model reproduces biomass burning contribution (fbb, %) in various regions within a factor of 2. GEOS-Chem shows that contribution from biomass burning in the Northern Hemisphere (fbb: 34 %) is much less than that in the Southern Hemisphere (52 %). Specifically, we find comparable contribution from biomass burning and fossil fuel in South Asia, S. America, S. Pacific, Australia and the Antarctic. fbb is the largest in Africa (64 %), followed by that in East Asia (40 %), Siberia (35 %), the Arctic (33 %), Canada (31 %), the US (25 %), and Europe (19 %). fbb is higher in summer (59–78 %) than in winter (28–32 %) in the Arctic, while it is higher in winter (42–58 %) and lower in summer (16–42 %) over the Himalayan–Tibetan plateau. The seasonal variations of fbb are relatively flat in North America, Europe, and Asia. We find that double biofuel emissions for domestic heating during cold seasons northern than 45° N increases fbb values in the Arctic and Europe in winter by ~ 30 %, resulting in a ~ 20 % reduction of discrepancies of fbb in the two regions. The remaining large negative discrepancies (Europe: 41 %; Arctic: 46 %) suggest that the biofuel emissions are probably still underestimated at high latitudes. Increasing fraction of thickly coated hydrophilic BC from 20 % to 70 % in fresh biomass burning plumes increases the fraction of hydrophilic BC in biomass burning plumes by 0–20 % (vary with seasons and regions), and thereby reduces atmospheric fbb by up to 11 %. Faster aging (4 hour e-folding time versus 1.15 days of e-folding time) of BC in biomass burning plumes reduces atmospheric fbb by 7 % (1–14 %), with the largest reduction in remote regions, such as the Arctic, the Antarctic and S. Pacific. Using size resolved scavenging accelerates scavenging of BC particles in both fossil fuel and biomass burning plumes, with a larger increase of the former. Thus, atmospheric fbb increases in most regions by 1–14 %. Overall, atmospheric fbb is determined by fbb in emissions mainly and by atmospheric processes, such as aging and scavenging, to a less extent.


2021 ◽  
Author(s):  
Ramina Alwarda ◽  
Kristof Bognar ◽  
Kimberly Strong ◽  
Martyn Chipperfield ◽  
Sandip Dhomse ◽  
...  

<p>The Arctic winter of 2019-2020 was characterized by an unusually persistent polar vortex and temperatures in the lower stratosphere that were consistently below the threshold for the formation of polar stratospheric clouds (PSCs). These conditions led to ozone loss that is comparable to the Antarctic ozone hole. Ground-based measurements from a suite of instruments at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Canada (80.05°N, 86.42°W) were used to investigate chemical ozone depletion. The vortex was located above Eureka longer than in any previous year in the 20-year dataset and lidar measurements provided evidence of polar stratospheric clouds (PSCs) above Eureka. Additionally, UV-visible zenith-sky Differential Optical Absorption Spectroscopy (DOAS) measurements showed record ozone loss in the 20-year dataset, evidence of denitrification along with the slowest increase of NO<sub>2</sub> during spring, as well as enhanced reactive halogen species (OClO and BrO). Complementary measurements of HCl and ClONO<sub>2</sub> (chlorine reservoir species) from a Fourier transform infrared (FTIR) spectrometer showed unusually low columns that were comparable to 2011, the previous year with significant chemical ozone depletion. Record low values of HNO<sub>3</sub> in the FTIR dataset are in accordance with the evidence of PSCs and a denitrified atmosphere. Estimates of chemical ozone loss were derived using passive ozone from the SLIMCAT offline chemical transport model to account for dynamical contributions to the stratospheric ozone budget.</p>


2012 ◽  
Vol 12 (15) ◽  
pp. 7073-7085 ◽  
Author(s):  
J. Kuttippurath ◽  
S. Godin-Beekmann ◽  
F. Lefèvre ◽  
G. Nikulin ◽  
M. L. Santee ◽  
...  

Abstract. We present a detailed discussion of the chemical and dynamical processes in the Arctic winters 1996/1997 and 2010/2011 with high resolution chemical transport model (CTM) simulations and space-based observations. In the Arctic winter 2010/2011, the lower stratospheric minimum temperatures were below 195 K for a record period of time, from December to mid-April, and a strong and stable vortex was present during that period. Simulations with the Mimosa-Chim CTM show that the chemical ozone loss started in early January and progressed slowly to 1 ppmv (parts per million by volume) by late February. The loss intensified by early March and reached a record maximum of ~2.4 ppmv in the late March–early April period over a broad altitude range of 450–550 K. This coincides with elevated ozone loss rates of 2–4 ppbv sh−1 (parts per billion by volume/sunlit hour) and a contribution of about 30–55% and 30–35% from the ClO-ClO and ClO-BrO cycles, respectively, in late February and March. In addition, a contribution of 30–50% from the HOx cycle is also estimated in April. We also estimate a loss of about 0.7–1.2 ppmv contributed (75%) by the NOx cycle at 550–700 K. The ozone loss estimated in the partial column range of 350–550 K exhibits a record value of ~148 DU (Dobson Unit). This is the largest ozone loss ever estimated in the Arctic and is consistent with the remarkable chlorine activation and strong denitrification (40–50%) during the winter, as the modeled ClO shows ~1.8 ppbv in early January and ~1 ppbv in March at 450–550 K. These model results are in excellent agreement with those found from the Aura Microwave Limb Sounder observations. Our analyses also show that the ozone loss in 2010/2011 is close to that found in some Antarctic winters, for the first time in the observed history. Though the winter 1996/1997 was also very cold in March–April, the temperatures were higher in December–February, and, therefore, chlorine activation was moderate and ozone loss was average with about 1.2 ppmv at 475–550 K or 42 DU at 350–550 K, as diagnosed from the model simulations and measurements.


2017 ◽  
Author(s):  
Guohua Zhang ◽  
Qinhao Lin ◽  
Long Peng ◽  
Xinhui Bi ◽  
Duohong Chen ◽  
...  

Abstract. In the present study, a ground-based counterflow virtual impactor (GCVI) was used to sample cloud droplet residual (cloud RES) particles, while a parallel PM2.5 inlet was used to sample cloud-free or cloud interstitial (cloud INT) particles. The mixing state of black carbon (BC)-containing particles in a size range of 0.1–1.6 µm and the mass concentrations of BC in the cloud-free, RES and INT particles were investigated using a single particle aerosol mass spectrometer (SPAMS) and two aethalometers, respectively, at a mountain site (1690 m a.s.l.) in southern China. The measured BC-containing particles were internally mixed extensively with sulfate, and were activated into cloud droplets to the same extent as all the measured particles. The results indicate the preferential activation of larger particles and/or that the production of secondary compositions shifts the BC-containing particles towards larger sizes. BC-containing particles with an abundance of both sulfate and organics were activated less than those with sulfate but limited organics, implying the importance of the mixing state on the incorporation of BC-containing particles into cloud droplets. The mass scavenging efficiency of BC with an average of 33 % was similar for different cloud events independent of the air mass. This is the first time that both the mixing state and cloud scavenging of BC in China have been reported. Since limited information on BC-containing particles in the free troposphere is available, the results also provide an important reference for the representation of BC concentrations, properties, and climate impacts in modeling studies.


Sign in / Sign up

Export Citation Format

Share Document