scholarly journals Ground-based observation of clusters and nucleation-mode particles in the Amazon

2018 ◽  
Vol 18 (17) ◽  
pp. 13245-13264 ◽  
Author(s):  
Daniela Wimmer ◽  
Stephany Buenrostro Mazon ◽  
Hanna Elina Manninen ◽  
Juha Kangasluoma ◽  
Alessandro Franchin ◽  
...  

Abstract. We investigated atmospheric new particle formation (NPF) in the Amazon rainforest using direct measurement methods. To our knowledge this is the first direct observation of NPF events in the Amazon region. However, previous observations elsewhere in Brazil showed the occurrence of nucleation-mode particles. Our measurements covered two field sites and both the wet and dry season. We measured the variability of air ion concentrations (0.8–12 nm) with an ion spectrometer between September 2011 and January 2014 at a rainforest site (T0t). Between February and October 2014, the same measurements were performed at a grassland pasture site (T3) as part of the GoAmazon 2014/5 experiment, with two intensive operating periods (IOP1 and IOP2 during the wet and the dry season, respectively). The GoAmazon 2014/5 experiment was designed to study the influence of anthropogenic emissions on the changing climate in the Amazon region. The experiment included basic aerosol and trace gas measurements at the ground, remote sensing instrumentation, and two aircraft-based measurements. The results presented in this work are from measurements performed at ground level at both sites. The site inside the rainforest (T0t) is located 60 km NNW of Manaus and influenced by pollution about once per week. The pasture (T3) site is located 70 km downwind from Manaus and influenced by the Manaus pollution plume typically once per day or every second day, especially in the afternoon. No NPF events were observed inside the rainforest (site T0t) at ground level during the measurement period. However, rain-induced ion and particle bursts (hereafter, “rain events”) occurred frequently (643 of 1031 days) at both sites during the wet and dry season, being most frequent during the wet season. During the rain events, the ion concentrations in three size ranges (0.8–2, 2–4, and 4–12 nm) increased up to about 104–105 cm−3. This effect was most pronounced in the intermediate and large size ranges, for which the background ion concentrations were about 10–15 cm−3 compared with 700 cm−3 for the cluster ion background. We observed eight NPF events at the pasture site during the wet season. We calculated the growth rates and formation rates of neutral particles and ions for the size ranges 2–3 and 3–7 nm using the ion spectrometer data. The observed median growth rates were 0.8 and 1.6 nm h−1 for 2–3 nm sized ions and particles, respectively, with larger growth rates (13.3 and 7.9 nm h−1) in the 3–7 nm size range. The measured nucleation rates were of the order of 0.2 cm−3 s−1 for particles and 4–9×10-3 cm−3 s−1 for ions. There was no clear difference in the sulfuric acid concentrations between the NPF event days and nonevent days (∼9×105 cm−3). The two major differences between the NPF days and nonevent days were a factor of 1.8 lower condensation sink on NPF event days (1.8×10-3 s−1) compared to nonevents (3.2×10-3 s−1) and different air mass origins. To our knowledge, this is the first time that results from ground-based sub-3 nm aerosol particle measurements have been obtained from the Amazon rainforest.

2017 ◽  
Author(s):  
Daniela Wimmer ◽  
Stephany Buenrostro Mazon ◽  
Hanna Elina Manninen ◽  
Juha Kangasluoma ◽  
Alessandro Franchin ◽  
...  

Abstract. We investigated atmospheric new particle formation (NPF) in the Amazon rainforest using direct measurement methods. The occurrence of NPF on ground level in the Amazon region has not been observed previously in pristine conditions. Our measurements extended to two field sites and two tropical seasons (wet and dry). We measured the variability of air ion concentrations (0.8–20 nm) with an ion spectrometer between 2011 and 2014 at the T0t site and between February and October 2014 at the GoAmazon 2014/5 T3 site. The main difference between the two sites is their geographical location. Both sites are influenced by the Manaus pollution plume yet with different frequencies. T0t is reached by the pollution about 1 day in 7, where the T3 site is about 15 % of the time affected by Manaus. The sampling was performed at ground level at both sites. At T0t the instrumentation was located inside the rainforest, whereas the T3 site was an open pasture site. T0t site is mostly parallel wind to Manaus, whereas T3 site is downwind of Manaus. No NPF events were observed inside the rainforest canopy (site T0t) at ground level during the period Sep 2011–Jan 2014. However, rain-induced ion and particle bursts (hereafter, “rain events”) occurred frequently (306/529 days) at T0t throughout the year but most frequently between January and April (wet season). Rain events increased nucleation mode (2–20 nm) particle and ion concentrations on the order of 104 cm−3. We observed 8 NPF events at the pasture site during the wet season. We calculated the growth rates (GR) and formation rates of neutral particles and ions for the size ranges 2–3 nm, 3–7 nm and 7–20 nm using the ion spectrometer data. One explanation for the absence of new particle formation events at the T0t site could be a combination of cleaner airmasses and the rainforest canopy acting as an ‘umbrella’, hindering the mixing of the airmasses down to the measurement height. Neutral particle growth rates in the 3–7 nm regime showed two phenomena. Growth rates were either about 2 nm h−1 or about 14 nm h−1. There was no clear difference in the sulfuric acid concentrations for NPF days vs days without NPF. Back trajectory calculations show different airmass origin for the NPF days compared to non NPF days.


1995 ◽  
Vol 11 (3) ◽  
pp. 419-428 ◽  
Author(s):  
Angelo De Lima Francisco ◽  
William E. Magnusson ◽  
Tânia M. Sanaiotti

ABSTRACTReproduction by Bolomys lasiurus is strongly seasonal in the Amazonian savanna of Alter do Chāo, Pará, Brazil. No pregnant or lactating females were recorded during the early dry season (July-September). Relative growth rates showed a similar though less consistent pattern. These patterns do not appear to be due to a direct effect of rainfall as high reproduction and growth were recorded during the late dry season (October-November), even though rainfall and the availability of fruits of shrubs were low during that period. It is likely that reinitiation of reproduction during the dry season is due to an increase in the availability of invertebrates and/ or wind-dispersed seeds. Fire at the end of the dry season appears to affect the diet of the rats, causing an increase in the ingestion of invertebrates during the following wet season. However, our data do not indicate that fire affects individual reproductive output or growth.


2020 ◽  
Author(s):  
Thiago S. Biscaro ◽  
Luiz A. T. Machado ◽  
Scott E. Giangrande ◽  
Michael P. Jensen

Abstract. This study suggests a new approach on how diurnal precipitation is modulated by the nighttime events developed over Central Amazon using data from the Observations and Modelling of the Green Ocean Amazon (GoAmazon 2014/5) field campaign in the Central Amazon as well as radar and satellite data. Local observations of cloud occurrences, soil temperature, surface fluxes, and planetary boundary layer characteristics are coupled with satellite data to identify physical mechanisms that control the diurnal rainfall in Amazonas during the wet and dry season. This is accomplished by evaluating the atmospheric properties during the nocturnal periods from the days prior to rainfall and non-raining events. Comparisons between non-rainy and rainy transitions are presented for the wet (January to April) and dry (June to September) seasons. The results suggest that wet season diurnal precipitation is modulated mainly by night-time cloud coverage and local effects such as turbulence, while dry season rain events are mainly controlled by large-meso scale circulation.


Koedoe ◽  
2011 ◽  
Vol 53 (1) ◽  
Author(s):  
Peter F. Scogings

An important aspect of managing African conservation areas involves understanding how large herbivores affect woody plant growth. Yet, data on growth rates of woody species in savannas are scarce, despite its critical importance for developing models to guide ecosystem management. What effect do browsing and season have on woody stem growth? Assuming no growth happens in the dry season, browsing should reduce stem growth in the wet season only. Secondly, do functional species groups differ in stem growth? For example, assuming fine-leaved, spiny species’ growth is not compromised by carbon-based chemical defences, they should grow faster than broad-leaved, chemically defended species. Dendrometers were fixed at 20 cm in height on the main stems of 244 random plants of six woody species in three plots (all large herbivores excluded, partial exclusion, and control) and observed from late 2006 to early 2010. Average monthly increment (AMI) per dendrometer and season (dry, wet) was calculated and the interaction between plot and season tested per species, controlling for initial stem girth. AMIs of Combretum apiculatum, Dichrostachys cinerea and Grewia flavescens were zero in the dry season, whilst those of Acacia exuvialis, Acacia grandicornuta and Euclea divinorum were either positive or negative in the dry season. Wet-season AMI of D. cinerea and dry-season AMI of G. flavescens tended to be reduced by browser exclusion. Net AMI (sum of the seasonal AMIs) was tested per species, but results suggested that only D. cinerea tended to be affected by browser exclusion. The results also suggested that stem radial growth of some fast-growing species is more prone to reduction by browser exclusion than the growth of other species, potentially reducing their competitiveness and increasing their risk of extirpation. Finally, the usefulness of grouping woody species into simple functional groups (e.g. fine-leaved vs. broad-leaved) for ecosystem management purposes in savannas requires further consideration. Conservation implications: Growth rates of woody plants are important parameters in savanna models, but data are scarce. Monitoring dendrometers in manipulative situations over several years can help fill that gap. Results of such studies can be used to identify species prone to high risk of extirpation.


2015 ◽  
Vol 66 (11) ◽  
pp. 1009 ◽  
Author(s):  
M. Bouvy ◽  
P. Got ◽  
Y. Bettarel ◽  
T. Bouvier ◽  
C. Carré ◽  
...  

Size fractionation was performed using water from the Great Reef of Toliara (Madagascar) taken from two different habitats (ocean and lagoon) during the dry and wet seasons, to study the growth and mortality rates of bacterioplankton. Experiments were conducted with 1 and 100% of heterotrophic nanoflagellate (HNF) concentrations and virus-free water was obtained by tangential filtration (10kDa). During the dry season, in both environments, bacterial abundance and production were significantly lower than values recorded during the wet season. Bacterial growth rates without grazers were 0.88 day–1 in the lagoon and 0.58 day–1 in the ocean. However, growth rates were statistically higher without grazers and viruses (1.58 day–1 and 1.27 day–1). An estimate of virus-induced bacterial mortality revealed the important role played by viruses in the lagoon (0.70 day–1) and the ocean (0.69 day–1). During the wet season, bacterial growth rates without grazers were significantly higher in both environments than were values obtained in the dry season. However, the bacterial growth rates were paradoxally lower in the absence of viruses than with viruses in both environments. Our results suggest that changes in nutrient concentrations can play an important role in the balance between viral lysis and HNF grazing in the bacterial mortality. However, virus-mediated bacterial mortality is likely to act simultaneously with nanoflagellates pressure in their effects on bacterial communities.


2020 ◽  
Vol 20 (24) ◽  
pp. 15551-15584
Author(s):  
Robbie Ramsay ◽  
Chiara F. Di Marco ◽  
Matthias Sörgel ◽  
Mathew R. Heal ◽  
Samara Carbone ◽  
...  

Abstract. The Amazon rainforest presents a unique, natural laboratory for the study of surface–atmosphere interactions. Its alternation between a near-pristine marine-influenced atmosphere during the wet season and a vulnerable system affected by periodic intrusions of anthropogenic pollution during the dry season provides an opportunity to investigate some fundamental aspects of boundary-layer chemical processes. This study presents the first simultaneous hourly measurements of concentrations, fluxes, and deposition velocities of the inorganic trace gases NH3, HCl, HONO, HNO3, and SO2 as well as their water-soluble aerosol counterparts NH4+, Cl−, NO2-, NO3- and SO42- over the Amazon. Species concentrations were measured in the dry season (from 6 October to 5 November 2017), at the Amazon Tall Tower Observatory (ATTO) in Brazil, using a two-point gradient wet-chemistry instrument (GRadient of AErosols and Gases Online Registration, GRAEGOR) sampling at 42 and 60 m. Fluxes and deposition velocities were derived from the concentration gradients using a modified form of the aerodynamic gradient method corrected for measurement within the roughness sub-layer. Findings from this campaign include observations of elevated concentrations of NH3 and SO2 partially driven by long-range transport (LRT) episodes of pollution and the substantial influence of coarse Cl− and NO3- particulate on overall aerosol mass burdens. From the flux measurements, the dry season budget of total reactive nitrogen dry deposition at the ATTO site was estimated as −2.9 kg N ha-1a-1. HNO3 and HCl were deposited continuously at a rate close to the aerodynamic limit. SO2 was deposited with an average daytime surface resistance (Rc) of 28 s m−1, whilst aerosol components showed average surface deposition velocities of 2.8 and 2.7 mm s−1 for SO42- and NH4+, respectively. Deposition rates of NO3- and Cl− were higher at 7.1 and 7.8 mm s−1, respectively, reflecting their larger average size. The exchange of NH3 and HONO was bidirectional, with NH3 showing emission episodes in the afternoon and HONO in the early morning hours. This work provides a unique dataset to test and improve dry deposition schemes for these compounds for tropical rainforest, which have typically been developed by interpolation from conditions in temperate environments. A future campaign should focus on making similar measurements in the wet season in order to provide a complete view of the annual pattern of inorganic trace gas and coarse aerosol biosphere–atmosphere exchange over tropical rainforest.


2020 ◽  
Author(s):  
Eva Y. Pfannerstill ◽  
Nina G. Reijrink ◽  
Achim Edtbauer ◽  
Akima Ringsdorf ◽  
Nora Zannoni ◽  
...  

Abstract. The tropical forests are Earth’s largest source of biogenic volatile organic compounds (BVOCs) and thus also the largest atmospheric sink region for the hydroxyl radical (OH). However, the OH sink above tropical forests is poorly understood, as past studies revealed large unattributed fractions of total OH reactivity. We present the first total OH reactivity and VOC measurements made at the Amazon Tall Tower Observatory (ATTO) at 80, 150, and 320 m above ground level, covering two dry seasons, one wet and one transition season in 2018–2019. By considering a wide range of previously unaccounted for VOCs, which we identified by PTR-ToF-MS, the unattributed fraction was with an overall average of 19 % within the measurement uncertainty of ~ 35 %. In terms of seasonal average OH reactivity, isoprene accounted for 23–43 % of the total, oxygenated VOCs (OVOCs) for 22–40 %, while monoterpenes, sesquiterpenes, and green leaf volatiles combined were responsible for 9–14 %. These findings show that OVOCs were until now an underestimated contributor to the OH sink above the Amazon forest. By day, total OH reactivity decreased towards higher altitudes with strongest vertical gradients observed around noon during the dry season (−0.026 s−1 m−1), while the gradient was inverted at night. Seasonal differences in total OH reactivity were observed, with the lowest daytime average and standard deviation of 19.9 ± 6.2 s−1 during a wet–dry transition season with frequent precipitation, 23.7 ± 6.5 s−1 during the wet season, and the highest average OH reactivities during two dry season observation periods with 28.1 ± 7.9 s−1 and 29.1 ± 10.8 s−1, respectively. The effects of different environmental parameters on the OH sink were investigated, and quantified, where possible. Precipitation caused short-term spikes in total OH reactivity, which were followed by below-normal OH reactivity for several hours. Biomass burning increased total OH reactivity by 2.7 s−1 to 9.5 s−1. We present a temperature-dependent parameterization of OH reactivity that could be applied in future models of the OH sink to further reduce our knowledge gaps in tropical forest OH chemistry.


2008 ◽  
Vol 24 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Joseph B. Yavitt ◽  
S. Joseph Wright

Abstract:We irrigated and fertilized (with nutrients) seedlings of Doliocarpus olivaceus (Dilleniaceae, a shade-tolerant liana), Faramea occidentalis (Rubiaceae, a shade-tolerant understorey tree) and Tetragastris panamensis (Burseraceae, a shade-tolerant canopy tree) growing in the understorey of an old-growth tropical moist forest in Panama to assess the impact of seasonal water availability and nutrient-poor soils on seedling growth rates. In control plots, height growth rates were greater in the dry season than in the wet season for Doliocarpus (21%) and for Faramea (89%), whereas Tetragastris had similar seasonal rates. For numbers of leaves, Faramea had 3.5-fold greater relative growth rates in the dry season than in the wet season, while Doliocarpus and Tetragastris lost leaves (semi-deciduous) during the same period. Irrigation and nutrient augmentation increased height growth rates for all three species (45% to 272%). For Doliocarpus, irrigation and nutrient augmentation prevented leaf fall during the dry season. For Faramea in the dry season, irrigation and nutrient augmentation when applied independently reduced the growth of new leaves by 65% to 87%, but relative growth rates for number of leaves were the same as the control rates in the combined irrigation and nutrient augmentation treatment. The growth of new leaves for Tetragastris responded to dry-season irrigation but not nutrient augmentation. Although all measurements occurred beneath the forest canopy, during the dry season, Tetragastris had a negative relationship between canopy openness and relative growth rate for number of leaves, whereas the other two species had a positive relationship. Our results show that soil resources influence growth rates even in the deep shade of the forest understorey, and demonstrate different responses to soil resources among species that might contribute to niche differentiation and species coexistence.


2020 ◽  
Author(s):  
Nora Zannoni ◽  
Stefan Wolff ◽  
Anywhere Tsokankunku ◽  
Matthias Soergel ◽  
Marta Sa ◽  
...  

<p>Sesquiterpenes (C<sub>15</sub>H<sub>24</sub>) are highly reactive biogenic volatile organic compounds playing an important role in atmospheric chemistry. Once emitted from the Earth’s surface, primarily by vegetation, they are rapidly oxidized to semivolatile oxygenated organic species that can lead to secondary organic aerosols (SOA) that influence climate. In the pristine Amazon rainforest environment oxidation of sesquiterpenes is initiated by OH and ozone.</p><p>We measured sesquiterpenes in March 2018 (wet season) and November 2018 (dry season) from central Amazonia, at the remote field site ATTO (Amazonian Tall Tower Observatory), Brazil. Samples were collected on adsorbent filled tubes equipped with ozone scrubbers at different heights above the forest canopy ; every three hours for two weeks at 80m and 150m (wet season) and every hour for three days at 80m, 150m and 320m (dry season). Samples were then analysed in the laboratory with a TD-GC-TOF-MS (Thermodesorption-Gas Chromatographer-Time Of Flight-Mass Spectrometer, Markes International). Simultaneous measurements of ozone and meteorological parameters were made at the nearby INSTANT tower. Identification of the chromatographic peaks was achieved by injection of standard molecules and by matching literature mass spectra. Quantification of the chemical compounds was achieved by injection of a standard mixture containing terpenes.The most abundant sesquiterpene measured at ATTO is (-)-α-copaene. Its diel profile varies with photosynthetically active radiation (PAR) and temperature, suggesting the canopy to be the main emission source. Interestingly, other identified sesquiterpenes show a consistent mirrored cycle, with their concentration being higher by night than by day. These varied mostly with RH suggesting the soil to be the main source of the emissions. Air samples taken at the ground are qualitatively and quantitatively different to those collected at different altitudes from the tower. Sesquiterpenes show a common maximum at sunrise (5 :00-7 :00 local time, UTC-4h) coincident with a strong decrease in ozone concentration (>50% decrease on average during the dry season). The strongest effect is registered during the dry season, when sesquiterpenes and ozone concentrations are highest and ozone loss is largest. The atmospheric impact of the measured sesquiterpenes will be discussed including ozone reactivity contributions and OH generation.</p>


Sign in / Sign up

Export Citation Format

Share Document