scholarly journals Wintertime hygroscopicity and volatility of ambient urban aerosol particles

2018 ◽  
Vol 18 (7) ◽  
pp. 4533-4548 ◽  
Author(s):  
Joonas Enroth ◽  
Jyri Mikkilä ◽  
Zoltán Németh ◽  
Markku Kulmala ◽  
Imre Salma

Abstract. Hygroscopic and volatile properties of atmospheric aerosol particles with dry diameters of (20), 50, 75, 110 and 145 nm were determined in situ by using a volatility–hygroscopicity tandem differential mobility analyser (VH-TDMA) system with a relative humidity of 90 % and denuding temperature of 270 ∘C in central Budapest during 2 months in winter 2014–2015. The probability density function of the hygroscopic growth factor (HGF) showed a distinct bimodal distribution. One of the modes was characterised by an overall mean HGF of approximately 1.07 (this corresponds to a hygroscopicity parameter κ of 0.033) independently of the particle size and was assigned to nearly hydrophobic (NH) particles. Its mean particle number fraction was large, and it decreased monotonically from 69 to 41 % with particle diameter. The other mode showed a mean HGF increasing slightly from 1.31 to 1.38 (κ values from 0.186 to 0.196) with particle diameter, and it was attributed to less hygroscopic (LH) particles. The mode with more hygroscopic particles was not identified. The probability density function of the volatility GF (VGF) also exhibited a distinct bimodal distribution with an overall mean VGF of approximately 0.96 independently of the particle size, and with another mean VGF increasing from 0.49 to 0.55 with particle diameter. The two modes were associated with less volatile (LV) and volatile (V) particles. The mean particle number fraction for the LV mode decreased from 34 to 21 % with particle diameter. The bimodal distributions indicated that the urban atmospheric aerosol contained an external mixture of particles with a diverse chemical composition. Particles corresponding to the NH and LV modes were assigned mainly to freshly emitted combustion particles, more specifically to vehicle emissions consisting of large mass fractions of soot likely coated with or containing some water-insoluble organic compounds such as non-hygroscopic hydrocarbon-like organics. The hygroscopic particles were ordinarily volatile. They could be composed of moderately transformed aged combustion particles consisting of partly oxygenated organics, inorganic salts and soot. The larger particles contained internally mixed non-volatile chemical species as a refractory residual in 20–25 % of the aerosol material (by volume).

2017 ◽  
Author(s):  
Joonas Enroth ◽  
Jyri Mikkilä ◽  
Zoltán Németh ◽  
Markku Kulmala ◽  
Imre Salma

Abstract. Hygroscopic and volatile properties of atmospheric aerosol particles with dry diameters of (20), 50, 75, 110 and 145 nm were determined in situ by using a VH-TDMA system with a relative humidity of 90 % and denuding temperature of 270 °C in central Budapest during two months in winter 2014–2015. The probability density function of the hygroscopic growth factor (GF) showed a distinct bimodal distribution. One of the modes was characterized by an overall mean GF of approximately 1.07 (the corresponding hygroscopicity parameter κ of 0.033) independently of the particle size, and was assigned to nearly hydrophobic (NH) particles. Its mean particle number fraction was large, and it was decreasing monotonically from 71 % to 41 % with particle diameter. The other mode showed a mean GF increasing slightly from 1.31 to 1.38 (κ values from 0.186 to 0.196) with particle diameter, and it was attributed to less hygroscopic (LH) particles. These hygroscopicity values are low in general. The mode with more hygroscopic particles was not identified. The probability density function of the volatility GF also exhibited a distinct bimodal distribution with an overall mean volatility GF of approximately 0.96 independently of the particle size, and with another mean GF increasing from 0.49 to 0.55 with particle diameter. The two modes were associated with less volatile (LV) and volatile (V) particles. The mean particle number fraction for the LV mode was decreasing from 34 % to 21 % with particle diameter. The bimodal distributions in the GF spectrum indicated that the urban atmospheric aerosol contained an external mixture of particles with a diverse chemical composition. The mean diurnal variability of the particle number fractions for the NH and LV modes, and of the volatility GF for the LV mode followed the diurnal pattern of the vehicular road traffic, while the mean diurnal variability of the hygroscopicity parameter for the NH, and of the particle number fractions for the V mode on workdays were inversely linked to the road traffic. The particles corresponding to the NH and LV modes were assigned mainly to freshly emitted combustion particles, more specifically to vehicle emissions consisting of large mass fractions of soot likely coated with or containing some water-insoluble organic compounds such as non-hygroscopic hydrocarbon-like organics. The particles related to the LH and V modes could be composed of moderately transformed aged combustion particles consisting of partly oxygenated organics, inorganic salts and soot. Both regional background sources and urban (local) emissions contribute to these particles. Dependency of the volatility GF and the volume fraction remaining after the thermal treatment on the mean hygroscopic GF suggested that the hygroscopic compounds were ordinarily volatile, and that the larger particles contained internally mixed non-volatile chemical species as refractory residuals in 20–25 % of the aerosol material (by volume), which could be core-like soot or organic polymers.


2020 ◽  
Vol 20 (19) ◽  
pp. 11329-11348 ◽  
Author(s):  
Jenni Kontkanen ◽  
Chenjuan Deng ◽  
Yueyun Fu ◽  
Lubna Dada ◽  
Ying Zhou ◽  
...  

Abstract. The climate and air quality effects of aerosol particles depend on the number and size of the particles. In urban environments, a large fraction of aerosol particles originates from anthropogenic emissions. To evaluate the effects of different pollution sources on air quality, knowledge of size distributions of particle number emissions is needed. Here we introduce a novel method for determining size-resolved particle number emissions, based on measured particle size distributions. We apply our method to data measured in Beijing, China, to determine the number size distribution of emitted particles in a diameter range from 2 to 1000 nm. The observed particle number emissions are dominated by emissions of particles smaller than 30 nm. Our results suggest that traffic is the major source of particle number emissions with the highest emissions observed for particles around 10 nm during rush hours. At sizes below 6 nm, clustering of atmospheric vapors contributes to calculated emissions. The comparison between our calculated emissions and those estimated with an integrated assessment model GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) shows that our method yields clearly higher particle emissions at sizes below 60 nm, but at sizes above that the two methods agree well. Overall, our method is proven to be a useful tool for gaining new knowledge of the size distributions of particle number emissions in urban environments and for validating emission inventories and models. In the future, the method will be developed by modeling the transport of particles from different sources to obtain more accurate estimates of particle number emissions.


2014 ◽  
Vol 60 (221) ◽  
pp. 431-439 ◽  
Author(s):  
Christof Gromke ◽  
Stefan Horender ◽  
Benjamin Walter ◽  
Michael Lehning

AbstractShadowgraphy was employed to study snow saltation in boundary-layer wind tunnel experiments with fresh, naturally deposited snow. The shadowgraphy method allowed for a temporally and spatially high-resolution investigation of snow particle characteristics within a measurement area of up to 50 mm × 50 mm. Snow particle size and number characteristics, and their variation with height in the saltation layer, were analysed. The following observations and findings were made for the saltation layer: (1) the particle number decreases exponentially with height, (2) the mean particle diameter is fairly constant, with a very slight tendency to decrease with height, (3) the maximum particle diameter decreases linearly with height, and (4) the snow particle size distribution can be adequately described by gamma probability density functions. The shape and scale parameters of the gamma distribution were found to vary systematically, though only slightly, with height over ground and between experiments with different snowpack characteristics.


2009 ◽  
Vol 9 (5) ◽  
pp. 19435-19470 ◽  
Author(s):  
S. Mirme ◽  
A. Mirme ◽  
A. Minikin ◽  
A. Petzold ◽  
U. Hõrrak ◽  
...  

Abstract. Formation of new atmospheric aerosol particles is known to occur almost all over the world and the importance of these particles to climate and air quality has been recognized. Recently, it was found that atmospheric aerosol formation begins at particle diameter of around 1.5–2.0 nm and a pool of sub-3 nm atmospheric particles – consisting of both charged and uncharged ones – was observed at the ground level. Here, we report on the first airborne observations of the pool of sub-3 nm neutral atmospheric particles. Between 2 and 3 nm, their concentration is roughly two orders of magnitude larger than that of the ion clusters, depending slightly on the altitude. Our findings indicate that new particle formation takes place actively throughout the tropospheric column up to the tropopause. Particles were found to be formed via neutral pathways in the boundary layer, and there was no sign of an increasing role by ion-induced nucleation toward the upper troposphere. Clouds, while acting as a source of sub-10 nm ions, did not perturb the overall budget of atmospheric clusters or particles.


2019 ◽  
Author(s):  
Carmen Dameto de España ◽  
Gerhard Steiner ◽  
Harald Schuh ◽  
Constantinos Sioutas ◽  
Regina Hitzenberger

Abstract. The ability of atmospheric aerosol particles to act as cloud condensation nuclei (CCN) depends on many factors, including particle size, chemical composition, and meteorological conditions. To expand our knowledge on CCN, it is essential to understand the factors leading to CCN activation. For this purpose a versatile aerosol concentrator enrichment system (VACES) has been modified to select CCN at different supersaturations. The VACES enables to sample CCN particles without altering their chemical and physical properties. The redesigned VACES enriches CCN particles by first passing the aerosol flow to a new saturator and then to a condenser. The activated particles are concentrated by an inertial virtual impactor, and then can be returned to their original size by diffusion-drying. For the calibration, the saturator temperature was fixed at 52 °C and the condenser temperature range was altered from 5 °C to 25 °C to obtain activation curves for NaCl particles of different sizes. Critical water vapour supersaturations can be calculated using the 50 % cutpoint of these curves. Calibration results have also shown that CCN concentrations can be enriched by a factor of approx. 17, which is in agreement with the experimentally determined enrichment factor of the original VACES. The advantage of the re-designed VACES over conventional CCN counters (both static and continuous flow instruments) lies in the substantial enrichment of activated CCN which facilitates further chemical analysis.


2009 ◽  
Vol 630 ◽  
pp. 179-189 ◽  
Author(s):  
E. CALZAVARINI ◽  
R. VOLK ◽  
M. BOURGOIN ◽  
E. LÉVÊQUE ◽  
J.-F. PINTON ◽  
...  

The dynamics of particles in turbulence when the particle size is larger than the dissipative scale of the carrier flow are studied. Recent experiments have highlighted signatures of particles' finiteness on their statistical properties, namely a decrease of their acceleration variance, an increase of correlation times (at increasing the particles size) and an independence of the probability density function of the acceleration once normalized to their variance. These effects are not captured by point-particle models. By means of a detailed comparison between numerical simulations and experimental data, we show that a more accurate description is obtained once Faxén corrections are included.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Fangyang Yuan ◽  
Fujun Gan

The method of moments is employed to predict the evolution of aerosol particles in the rainfall process. To describe the dynamic properties of particle size distribution, the population balance equation is converted to moment equations by the method of moments and the converted equations are solved numerically. The variations of particle number concentration, geometric mean diameter, and geometric standard deviation are given in the cases that the Brownian diffusion and inertial impaction of particles dominate, respectively. The effects of raindrop size distribution on particle size distribution are analyzed in nine cases. The results show that the particle number concentration decreases as time goes by, and particles dominated by Brownian diffusion are removed more significantly. The particle number concentration decreases much more rapidly when particle geometric mean diameter is smaller, and the particle size distribution tends to be monodisperse. For the same water content, the raindrops with small geometric mean diameters can remove particles with much higher efficiency than those with large geometric mean diameters. Particles in the “Greenfield gap” are relatively difficult to scavenge, and a new method is needed to remove it from the air.


2020 ◽  
Author(s):  
Jenni Kontkanen ◽  
Chenjuan Deng ◽  
Yueyun Fu ◽  
Lubna Dada ◽  
Ying Zhou ◽  
...  

Abstract. The climate and air quality effects of aerosol particles depend on the number and size of the particles. In urban environments, a large fraction of aerosol particles originates from anthropogenic emissions. To evaluate the effects of different pollution sources on air quality, knowledge of size distributions of particle number emissions is needed. Here we introduce a novel method for determining size-resolved particle number emissions based on measured particle size distributions. We apply our method to data measured in Beijing, China, to determine the number size distribution of emitted particles in diameter range from 2 to 1000 nm. The observed particle number emissions are dominated by emissions of particles smaller than 30 nm. Our results suggest that traffic is the major source of particle number emissions with the highest emissions observed for particles around 10 nm during rush hours. At sizes below 6 nm, clustering of atmospheric vapors contributes to calculated emissions. The comparison between our calculated emissions and those estimated with an integrated assessment model GAINS shows that our method yields clearly higher particle emissions at sizes below 60 nm, but at sizes above that the two methods agree well. Overall, our method is proven to be a useful tool for gaining new knowledge of size distributions of particle number emissions in urban environments.


Sign in / Sign up

Export Citation Format

Share Document