scholarly journals Variations in the vertical profile of ozone at four high-latitude Arctic sites from 2005 to 2017

2019 ◽  
Vol 19 (15) ◽  
pp. 9733-9751
Author(s):  
Shima Bahramvash Shams ◽  
Von P. Walden ◽  
Irina Petropavlovskikh ◽  
David Tarasick ◽  
Rigel Kivi ◽  
...  

Abstract. Understanding variations in atmospheric ozone in the Arctic is difficult because there are only a few long-term records of vertical ozone profiles in this region. We present 12 years of ozone profiles from February 2005 to February 2017 at four sites: Summit Station, Greenland; Ny-Ålesund, Svalbard, Norway; and Alert and Eureka, Nunavut, Canada. These profiles are created by combining ozonesonde measurements with ozone profile retrievals using data from the Microwave Limb Sounder (MLS). This combination creates a high-quality dataset with low uncertainty values by relying on in situ measurements of the maximum altitude of the ozonesondes (∼30 km) and satellite retrievals in the upper atmosphere (up to 60 km). For each station, the total column ozone (TCO) and the partial column ozone (PCO) in four atmospheric layers (troposphere to upper stratosphere) are analyzed. Overall, the seasonal cycles are similar at these sites. However, the TCO over Ny-Ålesund starts to decline 2 months later than at the other sites. In summer, the PCO in the upper stratosphere over Summit Station is slightly higher than at the other sites and exhibits a higher standard deviation. The decrease in PCO in the middle and upper stratosphere during fall is also lower over Summit Station. The maximum value of the lower- and middle-stratospheric PCO is reached earlier in the year over Eureka. Trend analysis over the 12-year period shows significant trends in most of the layers over Summit and Ny-Ålesund during summer and fall. To understand deseasonalized ozone variations, we identify the most important dynamical drivers of Arctic ozone at each level. These drivers are chosen based on mutual selected proxies at the four sites using stepwise multiple regression (SMR) analysis of various dynamical parameters with deseasonalized data. The final regression model is able to explain more than 80 % of the TCO and more than 70 % of the PCO in almost all of the layers. The regression model provides the greatest explanatory value in the middle stratosphere. The important proxies of the deseasonalized ozone time series at the four sites are tropopause pressure (TP) and equivalent latitude (EQL) at 370 K in the troposphere, the quasi-biennial oscillation (QBO) in the troposphere and lower stratosphere, the equivalent latitude at 550 K in the middle and upper stratosphere, and the eddy heat flux (EHF) and volume of polar stratospheric clouds throughout the stratosphere.

2018 ◽  
Author(s):  
Shima Bahramvash Shams ◽  
Von P. Walden ◽  
Samuel Oltmans ◽  
Irina Petropavlovskikh ◽  
Bryan Johnson ◽  
...  

Abstract. Understanding the drivers of atmospheric ozone variations in the Arctic is difficult because there are few long-term records of vertical ozone profiles in this region. We present 12 years of ozone profiles over Summit Station, Greenland (72.6 N, 38.4 W; 3200 meters) that were measured from 2005 to 2016. These profiles are subjected to data screening and are extended to 60 km using a robust extrapolation method. The total column ozone and the partial column ozone in four atmospheric layers (troposphere to upper stratosphere) are analyzed. The monthly mean total column ozone reaches a maximum of about 400 DU in April, then decreases to minimum values between 275 and 300 DU in the late summer and early fall. The partial column ozone values peak at different times between late winter and early summer. There is a positive trend in the total column that is likely due to increases in springtime ozone, however, these trends are not robust given the short period of record. A stepwise multiple regression analysis is performed to determine the primary drivers of ozone variations over Summit Station. This analysis shows that the variations in total column ozone are due primarily to changes in the tropopause pressure, the quasi-biennial oscillation (QBO), and the volume of polar stratospheric clouds. The eddy heat flux is also important for variations in the partial column ozone in the different altitude regions. The importance of the QBO appears to be a unique characteristic for ozone variations over the Greenland Ice Sheet (when compared to other nearby Arctic Stations) and may be related to the fact that Greenland is particularly sensitive to the phase of the QBO.


2013 ◽  
Vol 13 (11) ◽  
pp. 30407-30452 ◽  
Author(s):  
W. Chehade ◽  
J. P. Burrows ◽  
M. Weber

Abstract. The study presents a~long term statistical trend analysis of total ozone datasets obtained from various satellites. A multi-variate linear regression was applied to annual mean zonal mean data using various natural and anthropogenic explanatory variables that represent dynamical and chemical processes which modify global ozone distributions in a changing climate. The study investigated the magnitude and zonal distribution of the different atmospheric chemical and dynamical factors to long-term total ozone changes. The regression model included the equivalent effective stratospheric chlorine (EESC), the 11 yr solar cycle, the Quasi-Biennial Oscillation (QBO), stratospheric aerosol loading describing the effects from major volcanic eruptions, the El Niño/Southern Oscillation (ENSO), the Arctic and Antarctic Oscillation (AO/AAO), and accumulated eddy heat flux (EHF), the latter representing changes due to the Brewer–Dobson circulation. The total ozone column dataset used here comprises the SBUV/TOMS/OMI merged data (1979–2012) MOD V8.0, the SBUV/SBUV-2 merged V8.6 and the merged GOME/SCIAMACHY/GOME-2 (GSG) WFDOAS merged data (1995–2012). The trend analysis was performed for twenty six 5° wide latitude bands from 65° S to 65° N, the analysis explained most of the ozone variability. The results show that QBO dominates the ozone variability in the tropics (±7 DU) while at higher latitudes, the dynamical indices, AO/AAO and eddy heat flux, have substantial influence on total ozone variations by up to ±10 DU. Volcanic aerosols are only prominent during the eruption periods and these together with the ENSO signal are more evident in the Northern Hemisphere. The signature of the solar cycle is evident over all latitudes and contributes about 10 DU from solar maximum to solar minimum. EESC is found to be a main contributor to the long-term ozone decline and the trend changes after the end of 1990s. A positive significant trend in total ozone columns is found after 1997 (between 1 and 8.2 DU decade−1) which points at the slowing of ozone decline and the onset of ozone recovery. The EESC based trends are compared with the trends obtained from the statistical piecewise linear trend (PWLT or hockey stick) model with a turnaround in 1997 to examine the differences between both approaches. Similar and significant pre-turnaround trends are observed. On the other hand, our results do indicate that the positive PWLT turnaround trends are larger than indicated by the EESC trends, however, they agree within 2-sigma, thus demonstrating the success of the Montreal Protocol phasing out of the ozone depleting substances (ODS). A sensitivity study is carried out by comparing the regression results, using SBUV MOD 8.0 merged time series (1979–2012) and a merged dataset combining TOMS/SBUV (1979–June 1995) and GOME/SCIAMACHY/GOME-2 ("GSG") WFDOAS (Weighting Function DOAS) (July 1995–2012) as well as SBUV/SBUV-2 MOD 8.6 (1979–2012) in the regression analysis in order to investigate the uncertainty in the long-term trends due to different ozone datasets and data versions. Replacing the late SBUV merged data record with GSG data (unscaled and adjusted) leads to very similar results demonstrating the high consistency between satellite datasets. However, the comparison of the new SBUV merged Mod V8.6 with the V8.0 data showed somewhat smaller sensitivities with regard to several proxies, however, the EESC and PWLT trends are very similar. On the other hand, the new MOD 8.6 data in the PWLT model revealed a~reduced ODS related upward trend after 1997.


2008 ◽  
Vol 8 (2) ◽  
pp. 251-264 ◽  
Author(s):  
R. Müller ◽  
J.-U. Grooß ◽  
C. Lemmen ◽  
D. Heinze ◽  
M. Dameris ◽  
...  

Abstract. We investigate the extent to which quantities that are based on total column ozone are applicable as measures of ozone loss in the polar vortices. Such quantities have been used frequently in ozone assessments by the World Meteorological Organization (WMO) and also to assess the performance of chemistry-climate models. The most commonly considered quantities are March and October mean column ozone poleward of geometric latitude 63° and the spring minimum of daily total ozone minima poleward of a given latitude. Particularly in the Arctic, the former measure is affected by vortex variability and vortex break-up in spring. The minimum of daily total ozone minima poleward of a particular latitude is debatable, insofar as it relies on one single measurement or model grid point. We find that, for Arctic conditions, this minimum value often occurs in air outside the polar vortex, both in the observations and in a chemistry-climate model. Neither of the two measures shows a good correlation with chemical ozone loss in the vortex deduced from observations. We recommend that the minimum of daily minima should no longer be used when comparing polar ozone loss in observations and models. As an alternative to the March and October mean column polar ozone we suggest considering the minimum of daily average total ozone poleward of 63° equivalent latitude in spring (except for winters with an early vortex break-up). Such a definition both obviates relying on one single data point and reduces the impact of year-to-year variability in the Arctic vortex break-up on ozone loss measures. Further, this measure shows a reasonable correlation (r=–0.75) with observed chemical ozone loss. Nonetheless, simple measures of polar ozone loss must be used with caution; if possible, it is preferable to use more sophisticated measures that include additional information to disentangle the impact of transport and chemistry on ozone.


2015 ◽  
Vol 15 (6) ◽  
pp. 2915-2933 ◽  
Author(s):  
C. Vigouroux ◽  
T. Blumenstock ◽  
M. Coffey ◽  
Q. Errera ◽  
O. García ◽  
...  

Abstract. Ground-based Fourier transform infrared (FTIR) measurements of solar absorption spectra can provide ozone total columns with a precision of 2% but also independent partial column amounts in about four vertical layers, one in the troposphere and three in the stratosphere up to about 45km, with a precision of 5–6%. We use eight of the Network for the Detection of Atmospheric Composition Change (NDACC) stations having a long-term time series of FTIR ozone measurements to study the total and vertical ozone trends and variability, namely, Ny-Ålesund (79° N), Thule (77° N), Kiruna (68° N), Harestua (60° N), Jungfraujoch (47° N), Izaña (28° N), Wollongong (34° S) and Lauder (45° S). The length of the FTIR time series varies by station but is typically from about 1995 to present. We applied to the monthly means of the ozone total and four partial columns a stepwise multiple regression model including the following proxies: solar cycle, quasi-biennial oscillation (QBO), El Niño–Southern Oscillation (ENSO), Arctic and Antarctic Oscillation (AO/AAO), tropopause pressure (TP), equivalent latitude (EL), Eliassen–Palm flux (EPF), and volume of polar stratospheric clouds (VPSC). At the Arctic stations, the trends are found mostly negative in the troposphere and lower stratosphere, very mixed in the middle stratosphere, positive in the upper stratosphere due to a large increase in the 1995–2003 period, and non-significant when considering the total columns. The trends for mid-latitude and subtropical stations are all non-significant, except at Lauder in the troposphere and upper stratosphere and at Wollongong for the total columns and the lower and middle stratospheric columns where they are found positive. At Jungfraujoch, the upper stratospheric trend is close to significance (+0.9 ± 1.0% decade−1). Therefore, some signs of the onset of ozone mid-latitude recovery are observed only in the Southern Hemisphere, while a few more years seem to be needed to observe it at the northern mid-latitude station.


2013 ◽  
Vol 70 (12) ◽  
pp. 3959-3976 ◽  
Author(s):  
Alexey Yu. Karpechko ◽  
Douglas Maraun ◽  
Veronika Eyring

Abstract Accurate projections of stratospheric ozone are required because ozone changes affect exposure to ultraviolet radiation and tropospheric climate. Unweighted multimodel ensemble-mean (uMMM) projections from chemistry–climate models (CCMs) are commonly used to project ozone in the twenty-first century, when ozone-depleting substances are expected to decline and greenhouse gases are expected to rise. Here, the authors address the question of whether Antarctic total column ozone projections in October given by the uMMM of CCM simulations can be improved by using a process-oriented multiple diagnostic ensemble regression (MDER) method. This method is based on the correlation between simulated future ozone and selected key processes relevant for stratospheric ozone under present-day conditions. The regression model is built using an algorithm that selects those process-oriented diagnostics that explain a significant fraction of the spread in the projected ozone among the CCMs. The regression model with observed diagnostics is then used to predict future ozone and associated uncertainty. The precision of the authors’ method is tested in a pseudoreality; that is, the prediction is validated against an independent CCM projection used to replace unavailable future observations. The tests show that MDER has higher precision than uMMM, suggesting an improvement in the estimate of future Antarctic ozone. The authors’ method projects that Antarctic total ozone will return to 1980 values at around 2055 with the 95% prediction interval ranging from 2035 to 2080. This reduces the range of return dates across the ensemble of CCMs by about a decade and suggests that the earliest simulated return dates are unlikely.


2006 ◽  
Vol 6 (2) ◽  
pp. 525-537 ◽  
Author(s):  
S. Guillas ◽  
G. C. Tiao ◽  
D. J. Wuebbles ◽  
A. Zubrow

Abstract. In this paper, we introduce a statistical method for examining and adjusting chemical-transport models. We illustrate the findings with total column ozone predictions, based on the University of Illinois at Urbana-Champaign 2-D (UIUC 2-D) chemical-transport model of the global atmosphere. We propose a general diagnostic procedure for the model outputs in total ozone over the latitudes ranging from 60° South to 60° North to see if the model captures some typical patterns in the data. The method proceeds in two steps to avoid possible collinearity issues. First, we regress the measurements given by a cohesive data set from the SBUV(/2) satellite system on the model outputs with an autoregressive noise component. Second, we regress the residuals of this first regression on the solar flux, the annual cycle, the Antarctic or Arctic Oscillation, and the Quasi Biennial Oscillation. If the coefficients from this second regression are statistically significant, then they mean that the model did not simulate properly the pattern associated with these factors. Systematic anomalies of the model are identified using data from 1979 to 1995, and statistically corrected afterwards. The 1996–2003 validation sample confirms that the combined approach yields better predictions than the direct UIUC 2-D outputs.


2016 ◽  
Author(s):  
E. M. Bednarz ◽  
A. C. Maycock ◽  
N. L. Abraham ◽  
P. Braesicke ◽  
O. Dessens ◽  
...  

Abstract. Future trends in Arctic springtime total column ozone, and its chemical and dynamical drivers, are assessed using a 7 member ensemble from the Met Office Unified Model with United Kingdom Chemistry and Aerosols (UM-UKCA) simulating the period 1960-2100. The Arctic mean March total column ozone increases throughout the 21st century at a rate of ~11.5 DU decade-1, and is projected to return to the 1980 level in the late 2030s. However, the integrations show that even past 2060 springtime Arctic ozone can episodically drop by ~50-100 DU below the long-term mean to near present day values. Consistent with the global decline in inorganic chlorine (Cly) over the century, the estimated mean halogen induced chemical ozone loss in the Arctic lower atmosphere in spring decreases by around a factor of two between 1981-2000 and 2061-2080. However, in the presence of a cold and strong polar vortex elevated halogen losses well above the long-term mean continue to occur in the simulations into the second part of the century. The ensemble shows a radiatively-driven cooling trend modelled in the Arctic winter mid- and upper stratosphere, but there is less consistency across the seven ensemble members in the lower stratosphere (100-50 hPa). This is partly due to an increase in downwelling over the Arctic polar cap in winter, which increases transport of ozone into the polar region as well as drives adiabatic warming that partly offsets the radiatively-driven stratospheric cooling. However, individual years characterised by significantly suppressed downwelling, reduced transport and low temperatures continue into the future. We conclude that despite the future long-term recovery of Arctic ozone, the large interannual dynamical variability is expected to continue thereby facilitating episodic reductions in springtime ozone columns. Whilst our results suggest that the relative role of dynamical processes for determining Arctic springtime ozone will increase in the future, halogen chemistry will remain a smaller but non-negligible contributor for many decades.


2018 ◽  
Author(s):  
Xiaoyi Zhao ◽  
Kristof Bognar ◽  
Vitali Fioletov ◽  
Andrea Pazmino ◽  
Florence Goutail ◽  
...  

Abstract. Zenith-Sky scattered light Differential Optical Absorption Spectroscopy (ZS-DOAS) has been used widely to retrieve total column ozone (TCO). ZS-DOAS measurements have the advantage of being less sensitive to clouds than direct-sun measurements. However, the presence of clouds still affects the quality of ZS-DOAS TCO. Clouds are thought to be the largest contributor to random uncertainty in ZS-DOAS TCO, but their impact on data quality still needs to be quantified. This study has two goals: (1) to study whether clouds have a significant impact on ZS-DOAS TCO, and (2) to develop a cloud-screening algorithm to improve ZS-DOAS measurements in the Arctic under cloudy conditions. To quantify the impact of weather, eight years of measured and modelled TCO have been used, along with information about weather conditions at Eureka, Canada (80.05° N, 86.41° W). Relative to direct-sun TCO measurements by Brewer spectrophotometers and modelled TCO, a positive bias is found in ZS-DOAS TCO measured in cloudy weather, and a negative bias is found for clear conditions, with differences of up to 5 % between clear and cloudy conditions. A cloud-screening algorithm is developed for high-latitudes using the colour index calculated from ZS-DOAS spectra. The quality of ZS-DOAS TCO datasets is assessed using a statistical uncertainty estimation model, which suggests a 3–4 % random uncertainty. The new cloud-screening algorithm reduces the random uncertainty by 0.6 %. If all measurements collected during cloudy conditions, as identified using the weather station observations, are removed, the random uncertainty is reduced by 1.3 %. This work demonstrates that clouds are a significant contributor to uncertainty in ZS-DOAS TCO and proposes a method that can be used to screen clouds in high-latitude spectra.


2004 ◽  
Vol 4 (5) ◽  
pp. 5019-5044
Author(s):  
F. Goutail ◽  
J.-P. Pommereau ◽  
F. Lefèvre ◽  
M. Van Roozendael ◽  
S. B. Andersen ◽  
...  

Abstract. Total column ozone reduction in the Arctic is evaluated each winter since 1993/1994 by the transport method (3-D CTM passive ozone minus measurements). The cumulative loss from 1 December to the end of the season ranges from 5–10% during warm winters like 1998/1999, 2000/2001 and 2001/2002 up to 30%–32% during cold winters like 1994/1995 and 1995/1996. The 23% cumulative loss observed during the winter 2002/2003 is similar in amplitude to the 20–24% measured in 1996/1997 and 1999/2000 but the timing is different. It started unusually early in December after the occurrence of very low temperature at all stratospheric levels between 550 K and 435 K allowing PSC formation and thus chlorine activation. The early ozone loss of 2002/2003 is well captured by current 3-D CTM models.


2013 ◽  
Vol 13 (3) ◽  
pp. 7081-7112 ◽  
Author(s):  
P. J. Nair ◽  
S. Godin-Beekmann ◽  
J. Kuttippurath ◽  
G. Ancellet ◽  
F. Goutail ◽  
...  

Abstract. The trends and variability of ozone are assessed over a northern mid-latitude station, Haute-Provence Observatory (OHP – 43.93° N, 5.71° E), using total column ozone observations from the Dobson and Système d'Analyse par Observation Zénithale spectrometers, and stratospheric ozone profile measurements from Light detection and ranging, ozonesondes, Stratospheric Aerosol and Gas Experiment II, Halogen Occultation Experiment and Aura Microwave Limb Sounder. A multi-variate regression model with quasi biennial oscillation (QBO), solar flux, aerosol optical thickness, heat flux, North Atlantic oscillation (NAO) and piecewise linear trend (PWLT) or Equivalent Effective Stratospheric Chlorine (EESC) functions is applied to the ozone anomalies. The maximum variability of ozone in winter/spring is explained by QBO and heat flux in 15–45 km and in 15–24 km, respectively. The NAO shows maximum influence in the lower stratosphere during winter while the solar flux influence is largest in the lower and middle stratosphere in summer. The total column ozone trends estimated from the PWLT and EESC functions are of −1.39±0.26 and −1.40±0.25 DU yr−1, respectively over 1984–1996 and about 0.65±0.32 and 0.42±0.08 DU yr−1, respectively over 1997–2010. The ozone profiles yield similar and significant EESC-based and PWLT trends in 1984–1996 and are about −0.5 and −0.8 % yr−1 in the lower and upper stratosphere, respectively. In 1997–2010, the EESC-based and PWLT trends are significant and of order 0.3 and 0.1 % yr−1, respectively in the 18–28 km range, and at 40–45 km, EESC provides significant ozone trends larger than the insignificant PWLT results. Therefore, this analysis unveils ozone recovery signals from total column ozone and profile measurements at OHP, and hence in the mid-latitudes.


Sign in / Sign up

Export Citation Format

Share Document