scholarly journals Future Arctic ozone recovery: the importance of chemistry and dynamics

Author(s):  
E. M. Bednarz ◽  
A. C. Maycock ◽  
N. L. Abraham ◽  
P. Braesicke ◽  
O. Dessens ◽  
...  

Abstract. Future trends in Arctic springtime total column ozone, and its chemical and dynamical drivers, are assessed using a 7 member ensemble from the Met Office Unified Model with United Kingdom Chemistry and Aerosols (UM-UKCA) simulating the period 1960-2100. The Arctic mean March total column ozone increases throughout the 21st century at a rate of ~11.5 DU decade-1, and is projected to return to the 1980 level in the late 2030s. However, the integrations show that even past 2060 springtime Arctic ozone can episodically drop by ~50-100 DU below the long-term mean to near present day values. Consistent with the global decline in inorganic chlorine (Cly) over the century, the estimated mean halogen induced chemical ozone loss in the Arctic lower atmosphere in spring decreases by around a factor of two between 1981-2000 and 2061-2080. However, in the presence of a cold and strong polar vortex elevated halogen losses well above the long-term mean continue to occur in the simulations into the second part of the century. The ensemble shows a radiatively-driven cooling trend modelled in the Arctic winter mid- and upper stratosphere, but there is less consistency across the seven ensemble members in the lower stratosphere (100-50 hPa). This is partly due to an increase in downwelling over the Arctic polar cap in winter, which increases transport of ozone into the polar region as well as drives adiabatic warming that partly offsets the radiatively-driven stratospheric cooling. However, individual years characterised by significantly suppressed downwelling, reduced transport and low temperatures continue into the future. We conclude that despite the future long-term recovery of Arctic ozone, the large interannual dynamical variability is expected to continue thereby facilitating episodic reductions in springtime ozone columns. Whilst our results suggest that the relative role of dynamical processes for determining Arctic springtime ozone will increase in the future, halogen chemistry will remain a smaller but non-negligible contributor for many decades.

2016 ◽  
Vol 16 (18) ◽  
pp. 12159-12176 ◽  
Author(s):  
Ewa M. Bednarz ◽  
Amanda C. Maycock ◽  
N. Luke Abraham ◽  
Peter Braesicke ◽  
Olivier Dessens ◽  
...  

Abstract. Future trends in Arctic springtime total column ozone, and its chemical and dynamical drivers, are assessed using a seven-member ensemble from the Met Office Unified Model with United Kingdom Chemistry and Aerosols (UM-UKCA) simulating the period 1960–2100. The Arctic mean March total column ozone increases throughout the 21st century at a rate of  ∼  11.5 DU decade−1, and is projected to return to the 1980 level in the late 2030s. However, the integrations show that even past 2060 springtime Arctic ozone can episodically drop by  ∼  50–100 DU below the corresponding long-term ensemble mean for that period, reaching values characteristic of the near-present-day average level. Consistent with the global decline in inorganic chlorine (Cly) over the century, the estimated mean halogen-induced chemical ozone loss in the Arctic lower atmosphere in spring decreases by around a factor of 2 between the periods 2001–2020 and 2061–2080. However, in the presence of a cold and strong polar vortex, elevated halogen-induced ozone losses well above the corresponding long-term mean continue to occur in the simulations into the second part of the century. The ensemble shows a significant cooling trend in the Arctic winter mid- and upper stratosphere, but there is less confidence in the projected temperature trends in the lower stratosphere (100–50 hPa). This is partly due to an increase in downwelling over the Arctic polar cap in winter, which increases transport of ozone into the polar region as well as drives adiabatic warming that partly offsets the radiatively driven stratospheric cooling. However, individual winters characterised by significantly suppressed downwelling, reduced transport and anomalously low temperatures continue to occur in the future. We conclude that, despite the projected long-term recovery of Arctic ozone, the large interannual dynamical variability is expected to continue in the future, thereby facilitating episodic reductions in springtime ozone columns. Whilst our results suggest that the relative role of dynamical processes for determining Arctic springtime ozone will increase in the future, halogen chemistry will remain a smaller but non-negligible contributor for many decades to come.


2018 ◽  
Author(s):  
Fraser Dennison ◽  
James Keeble ◽  
Olaf Morgenstern ◽  
Guang Zeng ◽  
N. Luke Abraham ◽  
...  

Abstract. Improvements are made to two areas of the United Kingdom Chemistry and Aerosol (UKCA) module, which forms part of the Met Office Unified Model (UM) used for weather and climate applications. Firstly, a solar cycle is added to the photolysis scheme. The effect on total column ozone of this addition was found to be around 1–2 % in mid-latitude and equatorial regions in phase with the solar cycle. Secondly, reactions occurring on the surfaces of polar stratospheric clouds and sulfate aerosol are updated and extended by modification of the uptake coefficients of five existing reactions and the addition of a further eight reactions involving bromine species. These modifications are shown to reduce the overabundance of modeled total-column ozone in the Arctic during October to February, southern mid-latitudes during August, and the Antarctic during September. Antarctic springtime ozone depletion is shown to be enhanced by 25 DU on average, which now causes the ozone hole to be somewhat too deep compared to observations. We show that this is in part due to a cold bias of the Antarctic polar vortex in the model.


2019 ◽  
Vol 12 (3) ◽  
pp. 1227-1239 ◽  
Author(s):  
Fraser Dennison ◽  
James Keeble ◽  
Olaf Morgenstern ◽  
Guang Zeng ◽  
N. Luke Abraham ◽  
...  

Abstract. Improvements are made to two areas of the United Kingdom Chemistry and Aerosol (UKCA) module, which forms part of the Met Office Unified Model (UM) used for weather and climate applications. Firstly, a solar cycle is added to the photolysis scheme. The effect on total column ozone of this addition was found to be around 1 %–2 % in midlatitude and equatorial regions, in phase with the solar cycle. Secondly, reactions occurring on the surfaces of polar stratospheric clouds and sulfate aerosol are updated and extended by modification of the uptake coefficients of five existing reactions and the addition of a further eight reactions involving bromine species. These modifications are shown to reduce the overabundance of modelled total column ozone in the Arctic during October to February, southern midlatitudes during August and the Antarctic during September. Antarctic springtime ozone depletion is shown to be enhanced by 25 DU on average, which now causes the ozone hole to be somewhat too deep compared to observations. We show that this is in part due to a cold bias of the Antarctic polar vortex in the model.


2014 ◽  
Vol 14 (7) ◽  
pp. 3247-3276 ◽  
Author(s):  
R. Hommel ◽  
K.-U. Eichmann ◽  
J. Aschmann ◽  
K. Bramstedt ◽  
M. Weber ◽  
...  

Abstract. Record breaking loss of ozone (O3) in the Arctic stratosphere has been reported in winter–spring 2010/2011. We examine in detail the composition and transformations occurring in the Arctic polar vortex using total column and vertical profile data products for O3, bromine oxide (BrO), nitrogen dioxide (NO2), chlorine dioxide (OClO), and polar stratospheric clouds (PSC) retrieved from measurements made by SCIAMACHY (Scanning Imaging Absorption SpectroMeter for Atmospheric CHartography) on-board Envisat (Environmental Satellite), as well as total column ozone amount, retrieved from the measurements of GOME-2 (Global Ozone Monitoring Experiment) on MetOp-A (Meteorological Experimental Satellite). Similarly we use the retrieved data from DOAS (Differential Optical Absorption Spectroscopy) measurements made in Ny-Ålesund (78.55° N, 11.55° E). A chemical transport model (CTM) has been used to relate and compare Arctic winter–spring conditions in 2011 with those in the previous year. In late winter–spring 2010/2011 the chemical ozone loss in the polar vortex derived from SCIAMACHY observations confirms findings reported elsewhere. More than 70% of O3 was depleted by halogen catalytic cycles between the 425 and 525 K isentropic surfaces, i.e. in the altitude range ~16–20 km. In contrast, during the same period in the previous winter 2009/2010, a typical warm Arctic winter, only slightly more than 20% depletion occurred below 20 km, while 40% of O3 was removed above the 575 K isentrope (~23 km). This loss above 575 K is explained by the catalytic destruction by NOx descending from the mesosphere. In both Arctic winters 2009/2010 and 2010/2011, calculated O3 losses from the CTM are in good agreement to our observations and other model studies. The mid-winter 2011 conditions, prior to the catalytic cycles being fully effective, are also investigated. Surprisingly, a significant loss of O3 around 60%, previously not discussed in detail, is observed in mid-January 2011 below 500 K (~19 km) and sustained for approximately 1 week. The low O3 region had an exceptionally large spatial extent. The situation was caused by two independently evolving tropopause elevations over the Asian continent. Induced adiabatic cooling of the stratosphere favoured the formation of PSC, increased the amount of active chlorine for a short time, and potentially contributed to higher polar ozone loss later in spring.


2015 ◽  
Vol 8 (10) ◽  
pp. 4487-4505 ◽  
Author(s):  
K.-L. Chang ◽  
S. Guillas ◽  
V. E. Fioletov

Abstract. Total column ozone variations estimated using ground-based stations provide important independent source of information in addition to satellite-based estimates. This estimation has been vigorously challenged by data inhomogeneity in time and by the irregularity of the spatial distribution of stations, as well as by interruptions in observation records. Furthermore, some stations have calibration issues and thus observations may drift. In this paper we compare the spatial interpolation of ozone levels using the novel stochastic partial differential equation (SPDE) approach with the covariance-based kriging. We show how these new spatial predictions are more accurate, less uncertain and more robust. We construct long-term zonal means to investigate the robustness against the absence of measurements at some stations as well as instruments drifts. We conclude that time series analyzes can benefit from the SPDE approach compared to the covariance-based kriging when stations are missing, but the positive impact of the technique is less pronounced in the case of drifts.


2015 ◽  
Vol 8 (4) ◽  
pp. 3967-4009 ◽  
Author(s):  
K.-L. Chang ◽  
S. Guillas ◽  
V. E. Fioletov

Abstract. Total column ozone variations estimated using ground-based stations provide important independent source of information in addition to satellite-based estimates. This estimation has been vigorously challenged by data inhomogeneity in time and by the irregularity of the spatial distribution of stations, as well as by interruptions in observation records. Furthermore, some stations have calibration issues and thus observations may drift. In this paper we compare the spatial interpolation of ozone levels using the novel stochastic partial differential equation (SPDE) approach with kriging. We show how these new spatial predictions are more accurate, less uncertain and more robust. We construct long-term zonal means to investigate the robustness against the absence of measurements at some stations as well as instruments drifts. We conclude that time series analyzes can benefit from the SPDE approach compared to kriging when stations are missing, but the positive impact of the technique is less pronounced in the case of drifts.


2016 ◽  
Vol 16 (24) ◽  
pp. 15619-15627 ◽  
Author(s):  
Ulrike Langematz ◽  
Franziska Schmidt ◽  
Markus Kunze ◽  
Gregory E. Bodeker ◽  
Peter Braesicke

Abstract. The year 1980 has often been used as a benchmark for the return of Antarctic ozone to conditions assumed to be unaffected by emissions of ozone-depleting substances (ODSs), implying that anthropogenic ozone depletion in Antarctica started around 1980. Here, the extent of anthropogenically driven Antarctic ozone depletion prior to 1980 is examined using output from transient chemistry–climate model (CCM) simulations from 1960 to 2000 with prescribed changes of ozone-depleting substance concentrations in conjunction with observations. A regression model is used to attribute CCM modelled and observed changes in Antarctic total column ozone to halogen-driven chemistry prior to 1980. Wintertime Antarctic ozone is strongly affected by dynamical processes that vary in amplitude from year to year and from model to model. However, when the dynamical and chemical impacts on ozone are separated, all models consistently show a long-term, halogen-induced negative trend in Antarctic ozone from 1960 to 1980. The anthropogenically driven ozone loss from 1960 to 1980 ranges between 26.4 ± 3.4 and 49.8 ± 6.2 % of the total anthropogenic ozone depletion from 1960 to 2000. An even stronger ozone decline of 56.4 ± 6.8 % was estimated from ozone observations. This analysis of the observations and simulations from 17 CCMs clarifies that while the return of Antarctic ozone to 1980 values remains a valid milestone, achieving that milestone is not indicative of full recovery of the Antarctic ozone layer from the effects of ODSs.


2018 ◽  
Author(s):  
Xiaoyi Zhao ◽  
Kristof Bognar ◽  
Vitali Fioletov ◽  
Andrea Pazmino ◽  
Florence Goutail ◽  
...  

Abstract. Zenith-Sky scattered light Differential Optical Absorption Spectroscopy (ZS-DOAS) has been used widely to retrieve total column ozone (TCO). ZS-DOAS measurements have the advantage of being less sensitive to clouds than direct-sun measurements. However, the presence of clouds still affects the quality of ZS-DOAS TCO. Clouds are thought to be the largest contributor to random uncertainty in ZS-DOAS TCO, but their impact on data quality still needs to be quantified. This study has two goals: (1) to study whether clouds have a significant impact on ZS-DOAS TCO, and (2) to develop a cloud-screening algorithm to improve ZS-DOAS measurements in the Arctic under cloudy conditions. To quantify the impact of weather, eight years of measured and modelled TCO have been used, along with information about weather conditions at Eureka, Canada (80.05° N, 86.41° W). Relative to direct-sun TCO measurements by Brewer spectrophotometers and modelled TCO, a positive bias is found in ZS-DOAS TCO measured in cloudy weather, and a negative bias is found for clear conditions, with differences of up to 5 % between clear and cloudy conditions. A cloud-screening algorithm is developed for high-latitudes using the colour index calculated from ZS-DOAS spectra. The quality of ZS-DOAS TCO datasets is assessed using a statistical uncertainty estimation model, which suggests a 3–4 % random uncertainty. The new cloud-screening algorithm reduces the random uncertainty by 0.6 %. If all measurements collected during cloudy conditions, as identified using the weather station observations, are removed, the random uncertainty is reduced by 1.3 %. This work demonstrates that clouds are a significant contributor to uncertainty in ZS-DOAS TCO and proposes a method that can be used to screen clouds in high-latitude spectra.


2004 ◽  
Vol 4 (5) ◽  
pp. 5019-5044
Author(s):  
F. Goutail ◽  
J.-P. Pommereau ◽  
F. Lefèvre ◽  
M. Van Roozendael ◽  
S. B. Andersen ◽  
...  

Abstract. Total column ozone reduction in the Arctic is evaluated each winter since 1993/1994 by the transport method (3-D CTM passive ozone minus measurements). The cumulative loss from 1 December to the end of the season ranges from 5–10% during warm winters like 1998/1999, 2000/2001 and 2001/2002 up to 30%–32% during cold winters like 1994/1995 and 1995/1996. The 23% cumulative loss observed during the winter 2002/2003 is similar in amplitude to the 20–24% measured in 1996/1997 and 1999/2000 but the timing is different. It started unusually early in December after the occurrence of very low temperature at all stratospheric levels between 550 K and 435 K allowing PSC formation and thus chlorine activation. The early ozone loss of 2002/2003 is well captured by current 3-D CTM models.


Sign in / Sign up

Export Citation Format

Share Document