scholarly journals No anomalous supersaturation in ultracold cirrus laboratory experiments

2020 ◽  
Vol 20 (2) ◽  
pp. 1089-1103 ◽  
Author(s):  
Benjamin W. Clouser ◽  
Kara D. Lamb ◽  
Laszlo C. Sarkozy ◽  
Jan Habig ◽  
Volker Ebert ◽  
...  

Abstract. High-altitude cirrus clouds are climatically important: their formation freeze-dries air ascending to the stratosphere to its final value, and their radiative impact is disproportionately large. However, their formation and growth are not fully understood, and multiple in situ aircraft campaigns have observed frequent and persistent apparent water vapor supersaturations of 5 %–25 % in ultracold cirrus (T<205 K), even in the presence of ice particles. A variety of explanations for these observations have been put forth, including that ultracold cirrus are dominated by metastable ice whose vapor pressure exceeds that of hexagonal ice. The 2013 IsoCloud campaign at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud and aerosol chamber allowed explicit testing of cirrus formation dynamics at these low temperatures. A series of 28 experiments allows robust estimation of the saturation vapor pressure over ice for temperatures between 189 and 235 K, with a variety of ice nucleating particles. Experiments are rapid enough (∼10 min) to allow detection of any metastable ice that may form, as the timescale for annealing to hexagonal ice is hours or longer over the whole experimental temperature range. We show that in all experiments, saturation vapor pressures are fully consistent with expected values for hexagonal ice and inconsistent with the highest values postulated for metastable ice, with no temperature-dependent deviations from expected saturation vapor pressure. If metastable ice forms in ultracold cirrus clouds, it appears to have a vapor pressure indistinguishable from that of hexagonal ice to within about 4.5 %.

2018 ◽  
Vol 18 (5) ◽  
pp. 3419-3431 ◽  
Author(s):  
Mario Nachbar ◽  
Denis Duft ◽  
Thomas Leisner

Abstract. The crystallization of amorphous solid water (ASW) is known to form nano-crystalline ice. The influence of the nanoscale crystallite size on physical properties like the vapor pressure is relevant for processes in which the crystallization of amorphous ices occurs, e.g., in interstellar ices or cold ice cloud formation in planetary atmospheres, but up to now is not well understood. Here, we present laboratory measurements on the saturation vapor pressure over ice crystallized from ASW between 135 and 190 K. Below 160 K, where the crystallization of ASW is known to form nano-crystalline ice, we obtain a saturation vapor pressure that is 100 to 200 % higher compared to stable hexagonal ice. This elevated vapor pressure is in striking contrast to the vapor pressure of stacking disordered ice which is expected to be the prevailing ice polymorph at these temperatures with a vapor pressure at most 18 % higher than that of hexagonal ice. This apparent discrepancy can be reconciled by assuming that nanoscale crystallites form in the crystallization process of ASW. The high curvature of the nano-crystallites results in a vapor pressure increase that can be described by the Kelvin equation. Our measurements are consistent with the assumption that ASW is the first solid form of ice deposited from the vapor phase at temperatures up to 160 K. Nano-crystalline ice with a mean diameter between 7 and 19 nm forms thereafter by crystallization within the ASW matrix. The estimated crystal sizes are in agreement with reported crystal size measurements and remain stable for hours below 160 K. Thus, this ice polymorph may be regarded as an independent phase for many atmospheric processes below 160 K and we parameterize its vapor pressure using a constant Gibbs free energy difference of (982 ± 182) J mol−1 relative to hexagonal ice.


2017 ◽  
Author(s):  
Mario Nachbar ◽  
Denis Duft ◽  
Thomas Leisner

Abstract. Crystallization of amorphous solid water (ASW) is known to form nano-crystalline ice. The influence of the nanoscale crystallite size on physical properties like the vapor pressure is relevant for processes where crystallization of amorphous ices occurs e.g. in interstellar ices or cold ice cloud formation in planetary atmospheres, but up to now not well understood. Here, we present laboratory measurements on the saturation vapor pressure over nano-crystalline ice between 135 K and 190 K. Below 160 K, where nano-crystalline ice is known to be metastable for extended periods, we obtain a saturation vapor pressure that is 100 % to 200 % higher compared to stable hexagonal ice. This elevated vapor pressure is in striking contrast to the vapor pressure of stacking disordered ice which is expected to be the prevailing ice polymorph at these temperatures with a vapor pressure at most 18 % higher than that of hexagonal ice. This apparent discrepancy can be reconciled by assuming that nanoscale crystallites with mean diameter between 7 nm and 19 nm form in the crystallization process of ASW. The high curvature of these nano-crystallites results in a vapor pressure increase which can be described by the Kelvin equation. Our measurements show, that at temperatures up to 160 K, ASW is the first solid form of ice deposited from the vapor phase and that nano-crystalline ice forms thereafter by crystallization within the ASW matrix. The size of the nano-crystallites remains stable for hours below 160 K and thus nano-crystalline ice may be regarded as an independent phase for many atmospheric processes below 160 K. We parameterize the vapor pressure of nano-crystalline ice using a constant Gibbs free energy difference of (982 ± 182) J mol−1 relative to hexagonal ice.


1990 ◽  
Vol 14 ◽  
pp. 361-361
Author(s):  
Stephen Warren ◽  
Susan Frankenstein

Climatic warming due to increased greenhouse gases is expected to cause increased precipitation in the next century because of the increased water content of the air, assuming constant relative humidity. Since temperatures over most of Antarctica are far below freezing even in the warmest month of the year, the increase in melting is probably negligible compared to the increase in precipitation.Oerlemans (1982) showed that this increase of precipitation would cause a growth of the ice sheet, tending to lower sea level. This would partially counteract the rise of sea level due to increased melting on mountain glaciers and Greenland, and to a possible (and more difficult to predict) surge of ice from West Antarctica.Oerlemans may have underestimated the increase in accumulation. He used results of General Circulation Models (GCMs) which indicated an increase of precipitation by only 12% for a temperature change ΔΤ = 3 Κ and 30% for ΔΤ = 8 K. In contrast, the change in accumulation rate at Dome C (Lorius and others, 1979) accompanying the warming from the recent ice age to the present was in accord with the simple assumption that accumulation is proportional to saturation vapor pressure at the temperature of the inversion layer, i.e. a 30% increase for ΔΤ = 3 K.The experimental results are to be preferred to the climate model results because GCMs do not represent ice-sheet accumulation processes well. Most of the accumulation is not snow falling from clouds but instead results from clear-sky ice-crystal formation in near-surface air, or hoarfrost deposition on the surface. GCMs lack sufficient vertical resolution to represent the strong temperature inversion on which these accumulation mechanisms depend.The figure shows that the increase of vapor pressure due to ΔΤ = 5 Κ varies from a factor of 1.9 at Τ = −60°C to a factor of 1.6 at Τ = −20°C. A climatic warming of 5 K. over Antarctica, which is possible during the next century, could thus increase the Antarctic accumulation from its present 17g cm−2 yr−1 to 30 g cm−2 yr−1, leading to a 50 cm drop in sea level in 100 years. This assumes that the simple proportionality of precipitation rate to saturation vapor pressure applies as well to the coastal regions, which is doubtful because the accumulation processes are not the same as on the plateau.The potential importance of Antarctic accumulation changes in contributing to changes of sea level argues for further study of the mechanisms of Antarctic precipitation and for their improved representation in climate models.


1990 ◽  
Vol 14 ◽  
pp. 361
Author(s):  
Stephen Warren ◽  
Susan Frankenstein

Climatic warming due to increased greenhouse gases is expected to cause increased precipitation in the next century because of the increased water content of the air, assuming constant relative humidity. Since temperatures over most of Antarctica are far below freezing even in the warmest month of the year, the increase in melting is probably negligible compared to the increase in precipitation. Oerlemans (1982) showed that this increase of precipitation would cause a growth of the ice sheet, tending to lower sea level. This would partially counteract the rise of sea level due to increased melting on mountain glaciers and Greenland, and to a possible (and more difficult to predict) surge of ice from West Antarctica. Oerlemans may have underestimated the increase in accumulation. He used results of General Circulation Models (GCMs) which indicated an increase of precipitation by only 12% for a temperature change ΔΤ = 3 Κ and 30% for ΔΤ = 8 K. In contrast, the change in accumulation rate at Dome C (Lorius and others, 1979) accompanying the warming from the recent ice age to the present was in accord with the simple assumption that accumulation is proportional to saturation vapor pressure at the temperature of the inversion layer, i.e. a 30% increase for ΔΤ = 3 K. The experimental results are to be preferred to the climate model results because GCMs do not represent ice-sheet accumulation processes well. Most of the accumulation is not snow falling from clouds but instead results from clear-sky ice-crystal formation in near-surface air, or hoarfrost deposition on the surface. GCMs lack sufficient vertical resolution to represent the strong temperature inversion on which these accumulation mechanisms depend. The figure shows that the increase of vapor pressure due to ΔΤ = 5 Κ varies from a factor of 1.9 at Τ = −60°C to a factor of 1.6 at Τ = −20°C. A climatic warming of 5 K. over Antarctica, which is possible during the next century, could thus increase the Antarctic accumulation from its present 17g cm−2 yr−1 to 30 g cm−2 yr−1, leading to a 50 cm drop in sea level in 100 years. This assumes that the simple proportionality of precipitation rate to saturation vapor pressure applies as well to the coastal regions, which is doubtful because the accumulation processes are not the same as on the plateau. The potential importance of Antarctic accumulation changes in contributing to changes of sea level argues for further study of the mechanisms of Antarctic precipitation and for their improved representation in climate models.


1992 ◽  
Vol 271 ◽  
Author(s):  
Masahiro Yoshimura

ABSTRACTWell crystallized polycrystalline perovskite-type oxide thin and/or thick films were prepared at sufficiently low temperatures by newly developed “hydrothermal electrochemical techniques” where metals were electrochemically oxidized and reacted with some components in hydrothermal solutions. BaTiO3 films 70 to 300 nm thick were formed in Ba(OH)2 solution at 100–200°C under saturation vapor pressure on the Ti substrate and Ti deposited glass substrates. The electrical current enhanced to thicken their films. SrTiO3, BaFeO3 and LiNbO3 films were also prepared.


2012 ◽  
Vol 19 ◽  
pp. 374-380
Author(s):  
SUN SEOK BYEON ◽  
SANG JUN LEE ◽  
YOUN-JEA KIM

Abrupt closing valve in piping systems is sometimes resulted in cavitation due to the occurrence of high pressure difference. The bubbles generating by cavitation influence operating pressure and then those generate shock wave and vibration. These phenomena can consequentially cause to corrosion and erosion. So, the cavitation is the important factor to consider reliability of piping systems and mechanical lifetime. This paper investigated the various inhibition methods of cavitation in piping systems in which butterfly valves are installed. To prevent cavitation occurrence, it is desirable to analyze its characteristics between the upstream and downstream of process valve. Results show that the fluid velocity is fast when a working fluid passed through butterfly valve. The pressure of these areas was not only under saturation vapor pressure of water, but also cavitation was continuously occurred. We confirmed that the effect of existence of inserted orifice and influence to break condition under saturation vapor pressure of water. Results were graphically depicted by pressure distribution, velocity distribution, and vapor volume fraction.


Sign in / Sign up

Export Citation Format

Share Document