scholarly journals Estimating CH<sub>4</sub>, CO<sub>2</sub> and CO emissions from coal mining and industrial activities in the Upper Silesian Coal Basin using an aircraft-based mass balance approach

2020 ◽  
Vol 20 (21) ◽  
pp. 12675-12695
Author(s):  
Alina Fiehn ◽  
Julian Kostinek ◽  
Maximilian Eckl ◽  
Theresa Klausner ◽  
Michał Gałkowski ◽  
...  

Abstract. A severe reduction of greenhouse gas emissions is necessary to reach the objectives of the Paris Agreement. The implementation and continuous evaluation of mitigation measures requires regular independent information on emissions of the two main anthropogenic greenhouse gases, carbon dioxide (CO2) and methane (CH4). Our aim is to employ an observation-based method to determine regional-scale greenhouse gas emission estimates with high accuracy. We use aircraft- and ground-based in situ observations of CH4, CO2, carbon monoxide (CO), and wind speed from two research flights over the Upper Silesian Coal Basin (USCB), Poland, in summer 2018. The flights were performed as a part of the Carbon Dioxide and Methane (CoMet) mission above this European CH4 emission hot-spot region. A kriging algorithm interpolates the observed concentrations between the downwind transects of the trace gas plume, and then the mass flux through this plane is calculated. Finally, statistic and systematic uncertainties are calculated from measurement uncertainties and through several sensitivity tests, respectively. For the two selected flights, the in-situ-derived annual CH4 emission estimates are 13.8±4.3 and 15.1±4.0 kg s−1, which are well within the range of emission inventories. The regional emission estimates of CO2, which were determined to be 1.21±0.75 and 1.12±0.38 t s−1, are in the lower range of emission inventories. CO mass balance emissions of 10.1±3.6 and 10.7±4.4 kg s−1 for the USCB are slightly higher than the emission inventory values. The CH4 emission estimate has a relative error of 26 %–31 %, the CO2 estimate of 37 %–62 %, and the CO estimate of 36 %–41 %. These errors mainly result from the uncertainty of atmospheric background mole fractions and the changing planetary boundary layer height during the morning flight. In the case of CO2, biospheric fluxes also add to the uncertainty and hamper the assessment of emission inventories. These emission estimates characterize the USCB and help to verify emission inventories and develop climate mitigation strategies.

2020 ◽  
Author(s):  
Alina Fiehn ◽  
Julian Kostinek ◽  
Maximilian Eckl ◽  
Theresa Klausner ◽  
Michał Gałkowski ◽  
...  

Abstract. A severe reduction of greenhouse gas emissions is necessary to reach the objectives of the Paris Agreement. The implementation and continuous evaluation of mitigation measures requires regular independent information on emissions of the two main anthropogenic greenhouse gases, carbon dioxide (CO2) and methane (CH4). Our aim is to employ an observation-based method to determine regional-scale greenhouse gas emission estimates with high accuracy. We use aircraft- and ground-based in situ observations of CH4, CO2, carbon monoxide (CO), and wind speed from two research flights over the Upper Silesian Coal Basin (USCB), Poland, in summer 2018. The flights were performed as a part of the Carbon Dioxide and Methane (CoMet) mission above this European CH4 emission hot spot region. A kriging algorithm interpolates the observed concentrations between the downwind transects of the trace gas plume and then the mass flux through this plane is calculated. Finally, statistic and systematic uncertainties are calculated from measurement uncertainties and through several sensitivity tests, respectively. For the two selected flights, the in situ derived annual CH4 emission estimates are 13.8 ± 3.6 kg/s and 15.1 ± 3.0 kg/s, which is well within the range of emission inventories. The regional emission estimates of CO2, which were determined to be 1.21 ± 0.72 t/s and 1.12 ± 0.37 t/s, are in the lower range of emission inventories. CO mass balance emissions of 10.1 ± 3.2 kg/s and 10.7 ± 2.9 kg/s for the USCB are slightly higher than the emission inventory values. The CH4 emission estimate has a relative error of 21–26 %, the CO2 estimate of 33–60 %, and the CO estimate of 27–32 %. These errors mainly result from the uncertainty of atmospheric background mole fractions and the changing planetary boundary layer height during the morning flight. In the case of CO2, biospheric fluxes also add to the uncertainty and hamper the assessment of emission inventories. These emission estimates characterize the USCB and help to verify emission inventories and develop climate mitigation strategies.


2016 ◽  
Author(s):  
Thomas Krings ◽  
Bruno Neininger ◽  
Konstantin Gerilowski ◽  
Sven Krautwurst ◽  
Michael Buchwitz ◽  
...  

Abstract. Reliable techniques to infer greenhouse gas emission rates from localised sources require accurate measurement and inversion approaches. In this study airborne remote sensing observations by the MAMAP instrument and airborne in-situ measurements are used to infer emission estimates of carbon dioxide released from a cluster of coal fired power plants. For the analysis of in-situ data, a mass balance approach is described and applied. Whereas for the remote sensing observations an inverse Gaussian plume model is used in addition to a mass balance technique. A comparison between methods shows that results for all methods agree within a few percent for cases where in-situ measurements were made for the complete vertical plume extent. Even though the power plants are partly in close proximity and the associated carbon dioxide plumes are overlapping it is possible to derive emission rates from remote sensing data for individual power plants that agree well with results derived from emission factors and energy production data for the time of the overflight.


2018 ◽  
Vol 11 (2) ◽  
pp. 721-739 ◽  
Author(s):  
Thomas Krings ◽  
Bruno Neininger ◽  
Konstantin Gerilowski ◽  
Sven Krautwurst ◽  
Michael Buchwitz ◽  
...  

Abstract. Reliable techniques to infer greenhouse gas emission rates from localised sources require accurate measurement and inversion approaches. In this study airborne remote sensing observations of CO2 by the MAMAP instrument and airborne in situ measurements are used to infer emission estimates of carbon dioxide released from a cluster of coal-fired power plants. The study area is complex due to sources being located in close proximity and overlapping associated carbon dioxide plumes. For the analysis of in situ data, a mass balance approach is described and applied, whereas for the remote sensing observations an inverse Gaussian plume model is used in addition to a mass balance technique. A comparison between methods shows that results for all methods agree within 10 % or better with uncertainties of 10 to 30 % for cases in which in situ measurements were made for the complete vertical plume extent. The computed emissions for individual power plants are in agreement with results derived from emission factors and energy production data for the time of the overflight.


Author(s):  
José Célio Silveira Andrade ◽  
Gilsâmara Catarina Alves Conceiç�ão ◽  
Marcia Mara De Oliveira Marinho

2020 ◽  
pp. 94-110
Author(s):  
N.V. Dvoeglazova ◽  
B.V. Chubarenko ◽  
Y.A. Kozlova

The increase in greenhouse gases in the atmosphere is influenced to a greater extent by a degree of development of industry, a growth of electrification, deforestation, and the burning of fuel for the production of heating and electricity. The contribution of emissions of each of these factors and the ratio of greenhouse gases in them should be taken into account when developing the measures to prevent climate change. According to calculations of emissions from the territory of the Kaliningrad region the burning of fuel and energy resources are supposed to be playing the main role in the greenhouse gas emission from the territory of the Kaliningrad region. In statistical reference books this activity is described as the “activities for the production and distribution of electricity, gas and water.” The usage of this fuel in the energy sector is increasing: from 1742.4 thousand tons of standard fuel in 1991 up to 2193.9 in 2016. Such little increase in total emissions is due to the general technology improvement in the country. Carbon dioxide makes up the bulk of greenhouse gas emissions from the territory of the Kaliningrad region. The percentage of the gases in the total volume is as follows: CO2 - 96.7%, CH4 - 1%, N2 O - 2.3%. Its emissions for the period from 2013 to 2016 varied from 3,757.4 in 2014 to 4,091.7 in 2015 thousand tons of standard fuel, reaching its maximum value in 2015. The estimate presented in this paper is a lower estimate, since it does not take into account emissions from industrial processes, leaks, land use, waste, etc., as well as from some categories of emission sources due to the lack of data on the use of fuel in the Kaliningrad region. Among other things, the calculations of emissions of carbon dioxide, methane and nitrous oxide from the use of fuel by vehicles in 2016, which have shown to be 1.86 times less than from burning of fossil fuels for the same year (2032.87 Gg CO2 eq. and 3914.79 Gg CO2 eq., respectively) and to account for 34.5% of the total emissions, have been made. Moreover, according to the methodology for calculating emissions the factor of carbon dioxide absorption by the region’s forests has been taken into account. The amount of carbon dioxide absorbed by forests has shown to be only 11.9% of the emissions of this gas during the combustion of boiler and furnace fuel.


Author(s):  
Syakira Afiqah Suffian ◽  
Atiah Abdullah Sidek ◽  
Toshihiko Matsuto ◽  
Muataz Hazza Al Hazza ◽  
Hazlina Md Yusof ◽  
...  

The aim of this research was to evaluate the level of greenhouse gas emission from broiler chicken farming industry in Malaysia. In order to achieve that, Life Cycle Assessment method was chosen as a framework to complete the task. A case study was conducted at a broiler chicken farm to gather the data and information related to the broiler chicken production. Cradle-to-gate assessment including distribution stage was conducted based on the ISO14040/1044 guidelines. Inventory data for this case study was gathered in collaboration with one of the selected case study broiler chicken farm company. Greenhouse gas emission that consists of several most affected gases such as carbon dioxide, methane and nitrous oxide was studied. Result shows that the highest carbon dioxide emission came from manure, which accounted for 1,665,342 kg CO2 equivalent per total broilers while the highest methane emission came from feed, which accounted for 126,207.84 g CH4 equivalent per total broilers. For nitrous oxide emission, the highest values came from bedding which accounted for 20,316.87 g N2O equivalent per total broilers in the commercial modern broiler chicken farm. In this case study, it can be concluded that manure gives the most prominent effect to the greenhouse gas emission followed by feed and bedding materials. 


2014 ◽  
Vol 3 (2) ◽  
pp. 252 ◽  
Author(s):  
Mohamed Mourad

Because of their high efficiency and low emissions, fuel cell vehicles are undergoing extensive research and development. When considering the introduction of advanced vehicles, a complete evaluation must be performed to determine the potential impact of a technology on carbon dioxide (CO2) and greenhouse gases emissions. However, the reduction of CO2 emission from the vehicle became the most important objective for all researches institutes of vehicle technologies worldwide. There interest recently to find unconventional methods to reduce greenhouse gas emission from vehicle to keep the environment clean. This paper offers an overview and simulation study to fuel cell vehicles, with the aim of introducing their main advantages and evaluates their influence on emissions of carbon dioxide from fuel cell vehicle and compares advanced propulsion technologies on a well-to-wheel energy basis by using current technology for conventional and fuel cell. The results indicate that the use of fuel cells, and especially fuel cells that consume hydrogen, provide a good attempt for enhancing environment quality and reducing greenhouse gas (GHG) emissions. Moreover, the emission reduction percentage of fuel cell vehicle reaches to 64% comparing to the conventional vehicle. Keywords: Fuel Cell Electric Vehicle, Performance, Simulation, Driving Cycle, CO2 Emissions, Greenhouse Gas Emissions, Fuel Consumption.


2020 ◽  
Vol 13 (4) ◽  
pp. 1925-1943 ◽  
Author(s):  
Anna-Leah Nickl ◽  
Mariano Mertens ◽  
Anke Roiger ◽  
Andreas Fix ◽  
Axel Amediek ◽  
...  

Abstract. Methane is the second most important greenhouse gas in terms of anthropogenic radiative forcing. Since pre-industrial times, the globally averaged dry mole fraction of methane in the atmosphere has increased considerably. Emissions from coal mining are one of the primary anthropogenic methane sources. However, our knowledge about different sources and sinks of methane is still subject to great uncertainties. Comprehensive measurement campaigns and reliable chemistry–climate models, are required to fully understand the global methane budget and to further develop future climate mitigation strategies. The CoMet 1.0 campaign (May to June 2018) combined airborne in situ, as well as passive and active remote sensing measurements to quantify the emissions from coal mining in the Upper Silesian Coal Basin (USCB, Poland). Roughly 502 kt of methane is emitted from the ventilation shafts per year. In order to help with the flight planning during the campaigns, we performed 6 d forecasts using the online coupled, three-time nested global and regional chemistry–climate model MECO(n). We applied three-nested COSMO/MESSy instances going down to a spatial resolution of 2.8 km over the USCB. The nested global–regional model system allows for the separation of local emission contributions from fluctuations in the background methane. Here, we introduce the forecast set-up and assess the impact of the model's spatial resolution on the simulation of methane plumes from the ventilation shafts. Uncertainties in simulated methane mixing ratios are estimated by comparing different airborne measurements to the simulations. Results show that MECO(3) is able to simulate the observed methane plumes and the large-scale patterns (including vertically integrated values) reasonably well. Furthermore, we obtain reasonable forecast results up to forecast day four.


Sign in / Sign up

Export Citation Format

Share Document