scholarly journals A proposed fuel cell vehicle for reducing CO2 emissions and its contribution to reducing greenhouse gas emissions

2014 ◽  
Vol 3 (2) ◽  
pp. 252 ◽  
Author(s):  
Mohamed Mourad

Because of their high efficiency and low emissions, fuel cell vehicles are undergoing extensive research and development. When considering the introduction of advanced vehicles, a complete evaluation must be performed to determine the potential impact of a technology on carbon dioxide (CO2) and greenhouse gases emissions. However, the reduction of CO2 emission from the vehicle became the most important objective for all researches institutes of vehicle technologies worldwide. There interest recently to find unconventional methods to reduce greenhouse gas emission from vehicle to keep the environment clean. This paper offers an overview and simulation study to fuel cell vehicles, with the aim of introducing their main advantages and evaluates their influence on emissions of carbon dioxide from fuel cell vehicle and compares advanced propulsion technologies on a well-to-wheel energy basis by using current technology for conventional and fuel cell. The results indicate that the use of fuel cells, and especially fuel cells that consume hydrogen, provide a good attempt for enhancing environment quality and reducing greenhouse gas (GHG) emissions. Moreover, the emission reduction percentage of fuel cell vehicle reaches to 64% comparing to the conventional vehicle. Keywords: Fuel Cell Electric Vehicle, Performance, Simulation, Driving Cycle, CO2 Emissions, Greenhouse Gas Emissions, Fuel Consumption.

2020 ◽  
pp. 94-110
Author(s):  
N.V. Dvoeglazova ◽  
B.V. Chubarenko ◽  
Y.A. Kozlova

The increase in greenhouse gases in the atmosphere is influenced to a greater extent by a degree of development of industry, a growth of electrification, deforestation, and the burning of fuel for the production of heating and electricity. The contribution of emissions of each of these factors and the ratio of greenhouse gases in them should be taken into account when developing the measures to prevent climate change. According to calculations of emissions from the territory of the Kaliningrad region the burning of fuel and energy resources are supposed to be playing the main role in the greenhouse gas emission from the territory of the Kaliningrad region. In statistical reference books this activity is described as the “activities for the production and distribution of electricity, gas and water.” The usage of this fuel in the energy sector is increasing: from 1742.4 thousand tons of standard fuel in 1991 up to 2193.9 in 2016. Such little increase in total emissions is due to the general technology improvement in the country. Carbon dioxide makes up the bulk of greenhouse gas emissions from the territory of the Kaliningrad region. The percentage of the gases in the total volume is as follows: CO2 - 96.7%, CH4 - 1%, N2 O - 2.3%. Its emissions for the period from 2013 to 2016 varied from 3,757.4 in 2014 to 4,091.7 in 2015 thousand tons of standard fuel, reaching its maximum value in 2015. The estimate presented in this paper is a lower estimate, since it does not take into account emissions from industrial processes, leaks, land use, waste, etc., as well as from some categories of emission sources due to the lack of data on the use of fuel in the Kaliningrad region. Among other things, the calculations of emissions of carbon dioxide, methane and nitrous oxide from the use of fuel by vehicles in 2016, which have shown to be 1.86 times less than from burning of fossil fuels for the same year (2032.87 Gg CO2 eq. and 3914.79 Gg CO2 eq., respectively) and to account for 34.5% of the total emissions, have been made. Moreover, according to the methodology for calculating emissions the factor of carbon dioxide absorption by the region’s forests has been taken into account. The amount of carbon dioxide absorbed by forests has shown to be only 11.9% of the emissions of this gas during the combustion of boiler and furnace fuel.


2021 ◽  
Author(s):  
Rebekka Artz ◽  
Mhairi Coyle ◽  
Gillian Donaldson-Selby ◽  
Ross Morrison

Abstract The net impact of greenhouse gas emissions from degraded peatland environments on national Inventories and subsequent mitigation of such emissions has only been seriously considered within the last decade. Data on greenhouse gas emissions from special cases of peatland degradation, such as eroding peatlands, are particularly scarce. Here, we report the first eddy covariance-based monitoring of carbon dioxide (CO2) emissions from an eroding Atlantic blanket bog. The CO2 budget across the period July 2018 to November 2019 was 147 (+/- 9) g C m-2. For an annual budget that contained proportionally more of the extreme 2018 drought and heat wave, cumulative CO2 emissions were nearly double (191 g C m-2) of that of an annual period without drought (106 g C m-2), suggesting that direct CO2 emissions from eroded peatlands are at risk of increasing with projected changes in temperatures and precipitation due to global climate change. The results of this study are consistent with chamber-based and modelling studies that suggest degraded blanket bogs to be a net source of CO2 to the atmosphere, and provide baseline data against which to assess future peatland restoration efforts in this region.


2018 ◽  
Vol 69 (5) ◽  
pp. 751 ◽  
Author(s):  
Gang Li ◽  
Hongli Li ◽  
Meng Yang ◽  
Ting Lei ◽  
Mingxiang Zhang ◽  
...  

Reservoirs have been regarded as hot spots for greenhouse gas emissions since the 1990s. However, there is scant research about littoral zones of reservoirs. In the present study, static closed chamber and gas chromatograph techniques were used to measure methane (CH4) and carbon dioxide (CO2) flux in the littoral area of a temperate reservoir from 2009 to 2010. The littoral area comprises three zones, namely supralittoral, eulittoral and infralittoral. The patterns of CH4 and CO2 emissions from these three littoral zones were significantly different during the sampling periods, with the eulittoral zone having the highest CH4 flux and the supralittoral zone having the highest CO2 flux. Temperature and biomass correlated with CH4 and CO2 emissions. Measurement of CO2 emissions after removing vegetation varied in each zone and according to time of sampling. A large littoral area of the reservoir sampled herein will be submerged and converted to a pelagic area with deep standing water after the South to North Water Transfer Project is completed, in 2050. The results of the present study suggest further research and monitoring are needed, and should focus on likely effects of extreme climate events and the effects of human-mediated factors on greenhouse gas emissions.


2021 ◽  
Author(s):  
Michael Eisen ◽  
Patrick O Brown

We used public data on greenhouse-gas emissions and land use to evaluate the potential impact of eliminating animal agriculture on atmospheric greenhouse gas levels, and global warming potential. We first updated estimates of carbon dioxide, methane, and nitrous oxide emissions from livestock and livestock feed production. We used these data, along with recent estimates of the atmospheric carbon dioxide that could be converted by photosynthesis into perennial biomass on land currently engaged in animal agriculture, to develop models of net anthropogenic emissions under food-system scenarios ranging from business as usual to the complete elimination of animal agriculture. We then used simple simulations to project atmospheric levels of these three gases through the end of the century under each scenario. Using cumulative differences in radiative forcing as a measure of the impact of different diets, we found that a gradual transition over the next 15 years to a plant-only diet would have the same effect through the rest of the century as an annual reduction of 28 Gt of CO2 emissions. This would effectively negate 56 percent of global emissions at the current rate of 50 Gt CO2eq per year, with a net negation of 2,200 gigatonnes of CO2 emissions by the year 2100. The climate benefits would accrue rapidly - most in the first few decades, effectively pausing greenhouse-gas accumulation for 30 years. These results establish the replacement of animal agriculture as by far the most powerful option in our arsenal of climate-defense strategies, especially given the urgency of the climate threat. How to orchestrate such a shift to maximize its beneficial environmental, public health, food security, economic and social consequences and minimize potential harms should therefore be at the center of climate policy discussions.


Author(s):  
Seongmin Kang ◽  
Seungjin Kim ◽  
Jeongwoo Lee ◽  
Youngjae Jeon ◽  
Ki-Hyun Kim ◽  
...  

According to the IPCC guidelines, CO2 emissions from biomass should be excluded from the entire amount of CO2 emissions when calculating CO2 emissions and should be separately reported due to the “carbon neutrality.” Sewage sludge is one of the representative biomass fuels. And it is mixed with fossil fuels in terms of greenhouse gas reduction or is used as fuel to replace fossil fuels by itself. According to the results of this study, biomass contents of both the sewage sludge and the sewage sludge incineration exhaust gases did not amount to 100%. At present, in many countries(South Korea, Japan, and Germany), when calculating greenhouse gas emissions from sewage sludge incinerator, all CO2 emissions from sewage sludge are judged to be biomass and only those greenhouse gas emissions that correspond to Non-CO2 gases are calculated as greenhouse gas emissions. However, since, according our results, the content of sewage sludge is not 100% biomass, if CO2 emissions are excluded according to the existing greenhouse gas emission calculation method, the amount of emissions may be underestimated. Therefore, to accurately calculate greenhouse gas emissions from sewage sludge incinerator, CO2 emissions should be calculated in consideration of the fossil carbon contents of sewage sludge.


Sign in / Sign up

Export Citation Format

Share Document