scholarly journals The decomposition of cloud–aerosol forcing in the UK Earth System Model (UKESM1)

2020 ◽  
Vol 20 (24) ◽  
pp. 15681-15724
Author(s):  
Daniel P. Grosvenor ◽  
Kenneth S. Carslaw

Abstract. Climate variability in the North Atlantic influences processes such as hurricane activity and droughts. Global model simulations have identified aerosol–cloud interactions (ACIs) as an important driver of sea surface temperature variability via surface aerosol forcing. However, ACIs are a major cause of uncertainty in climate forcing; therefore, caution is needed in interpreting the results from coarse-resolution, highly parameterized global models. Here, we separate and quantify the components of the surface shortwave effective radiative forcing (ERF) due to aerosol in the atmosphere-only version of the UK Earth System Model (UKESM1) and evaluate the cloud properties and their radiative effects against observations. We focus on a northern region of the North Atlantic (NA) where stratocumulus clouds dominate (denoted the northern NA region) and a southern region where trade cumulus and broken stratocumulus dominate (southern NA region). Aerosol forcing was diagnosed using a pair of simulations in which the meteorology is approximately fixed via nudging to analysis; one simulation has pre-industrial (PI) and one has present-day (PD) aerosol emissions. This model does not include aerosol effects within the convective parameterization (but aerosol does affect the clouds associated with detrainment) and so it should be noted that the representation of aerosol forcing for convection is incomplete. Contributions to the surface ERF from changes in cloud fraction (fc), in-cloud liquid water path (LWPic) and droplet number concentration (Nd) were quantified. Over the northern NA region, increases in Nd and LWPic dominate the forcing. This is likely because the already-high fc there reduces the chances of further large increases in fc and allows cloud brightening to act over a larger region. Over the southern NA region, increases in fc dominate due to the suppression of rain by the additional aerosols. Aerosol-driven increases in macrophysical cloud properties (LWPic and fc) will rely on the response of the boundary layer parameterization, along with input from the cloud microphysics scheme, which are highly uncertain processes. Model grid boxes with low-altitude clouds present in both the PI and PD dominate the forcing in both regions. In the northern NA, the brightening of completely overcast low cloud scenes (100 % cloud cover, likely stratocumulus) contributes the most, whereas in the southern NA the creation of clouds with fc of around 20 % from clear skies in the PI was the largest single contributor, suggesting that trade cumulus clouds are created in response to increases in aerosol. The creation of near-overcast clouds was also important there. The correct spatial pattern, coverage and properties of clouds are important for determining the magnitude of aerosol forcing, so we also assess the realism of the modelled PD clouds against satellite observations. We find that the model reproduces the spatial pattern of all the observed cloud variables well but that there are biases. The shortwave top-of-the-atmosphere (SWTOA) flux is overestimated by 5.8 % in the northern NA region and 1.7 % in the southern NA, which we attribute mainly to positive biases in low-altitude fc. Nd is too low by −20.6 % in the northern NA and too high by 21.5 % in the southern NA but does not contribute greatly to the main SWTOA biases. Cloudy-sky liquid water path mainly shows biases north of Scandinavia that reach between 50 % and 100 % and dominate the SWTOA bias in that region. The large contribution to aerosol forcing in the UKESM1 model from highly uncertain macrophysical adjustments suggests that further targeted observations are needed to assess rain formation processes, how they depend on aerosols and the model response to precipitation in order to reduce uncertainty in climate projections.

2020 ◽  
Author(s):  
Daniel P. Grosvenor ◽  
Kenneth S. Carslaw

Abstract. Climate variability in the North Atlantic influences processes such as hurricane activity and droughts. Global model simulations have identified aerosol-cloud interactions (ACIs) as an important driver of sea surface temperature variability via surface aerosol forcing. However, ACIs are a major cause of uncertainty in climate forcing, therefore caution is needed in interpreting the results from coarse resolution, highly parameterized global models. Here we separate and quantify the components of the surface shortwave effective radiative forcing (ERF) due to aerosol in the atmosphere-only version of the UK Earth System Model (UKESM1) and evaluate the cloud properties and their radiative effects against observations. We focus on a northern region of the North Atlantic (NA) where stratocumulus clouds dominate (denoted the northern NA region) and a southern region where trade cumulus and broken stratocumlus dominate (southern NA region). Aerosol forcing was diagnosed using a pair of simulations in which the meteorology is approximately fixed via nudging to analysis; one simulation has pre-industrial (PI) and one has present-day (PD) aerosol emissions. Contributions to the surface ERF from changes in cloud fraction (fc), in-cloud liquid water path (LWPic) and droplet number concentration (Nd) were quantified. Over the northern NA region increases in Nd and LWPic dominate the forcing. This is likely because the high fc there precludes further large increases in fc and allows cloud brightening to act over a larger region. Over the southern NA region increases in fc dominate due to the suppression of rain by the additional aerosols. Aerosol-driven increases in macrophysical cloud properties (LWPic and fc) will rely on the response of the boundary layer parameterization, along with input from the cloud microphysics scheme, which are highly uncertain processes. Model gridboxes with low-altitude clouds present in both the PI and PD dominate the forcing in both regions. In the northern NA the brightening of completely overcast low cloud scenes (100 % cloud cover, likely stratocumlus) contributes the most, whereas in the southern NA the creation of clouds with fc of around 20 % from clear skies in the PI was the largest single contributor, suggesting that trade cumulus clouds are created in response to increases in aerosol. The creation of near-overcast clouds was also important there. The correct spatial pattern, coverage and properties of clouds are important for determining the magnitude of aerosol forcing so we also assess the realism of the modelled PD clouds against satellite observations. We find that the model reproduces the spatial pattern of all the observed cloud variables well, but that there are biases. The shortwave top-of-the-atmosphere (SWTOA) flux is overestimated by 5.8 % in the northern NA region and 1.7 % in the southern NA, which we attribute mainly to positive biases in low-altitude fc. Nd is too low by −20.6 % in the northern NA and too high by by 21.5 % in the southern NA, but does not contribute greatly to the main SWTOA biases. Cloudy-sky liquid water path mainly shows biases north of Scandinavia that reach up to between 50 and 100 % and dominate the SWTOA bias in that region. The large contribution to aerosol forcing in the UKESM1 model from highly uncertain macrophysical adjustments suggests that further targeted observations are needed to assess rain formation processes, how they depend on aerosols and the model response to precipitation in order to reduce uncertainty in climate projections.


2016 ◽  
Vol 29 (19) ◽  
pp. 6973-6991 ◽  
Author(s):  
Laura M. Ciasto ◽  
Camille Li ◽  
Justin J. Wettstein ◽  
Nils Gunnar Kvamstø

Abstract This study investigates the sensitivity of the North Atlantic storm track to future changes in local and global sea surface temperature (SST) and highlights the role of SST changes remote to the North Atlantic. Results are based on three related coupled climate models: the Community Climate System Model, version 4 (CCSM4), the Community Earth System Model, version 1 (Community Atmosphere Model, version 5) [CESM1(CAM5)], and the Norwegian Earth System Model, version 1 (intermediate resolution) (NorESM1-M). Analysis reveals noticeable intermodel differences in projected storm-track changes from the coupled simulations [i.e., the difference in 200-hPa eddy activity between the representative concentration pathway 8.5 (RCP8.5) and historical scenarios]. In the CCSM4 coupled simulations, the North Atlantic storm track undergoes a poleward shift and eastward extension. In CESM1(CAM5), the storm-track change is dominated by an intensification and eastward extension. In NorESM1-M, the storm-track change is characterized by a weaker intensification and slight eastward extension. Atmospheric experiments driven only by projected local (North Atlantic) SST changes from the coupled models fail to reproduce the magnitude and structure of the projected changes in eddy activity aloft and zonal wind from the coupled simulations. Atmospheric experiments driven by global SST and sea ice changes do, however, reproduce the eastward extension. Additional experiments suggest that increasing greenhouse gas (GHG) concentrations do not directly influence storm-track changes in the coupled simulations, although they do through GHG-induced changes in SST. The eastward extension of the North Atlantic storm track is hypothesized to be linked to western Pacific SST changes that influence tropically forced Rossby wave trains, but further studies are needed to isolate this mechanism from other dynamical adjustments to global warming.


2013 ◽  
Vol 6 (2) ◽  
pp. 517-531 ◽  
Author(s):  
M. A. Chandler ◽  
L. E. Sohl ◽  
J. A. Jonas ◽  
H. J. Dowsett ◽  
M. Kelley

Abstract. The mid-Pliocene Warm Period (mPWP) bears many similarities to aspects of future global warming as projected by the Intergovernmental Panel on Climate Change (IPCC, 2007). Both marine and terrestrial data point to high-latitude temperature amplification, including large decreases in sea ice and land ice, as well as expansion of warmer climate biomes into higher latitudes. Here we present our most recent simulations of the mid-Pliocene climate using the CMIP5 version of the NASA/GISS Earth System Model (ModelE2-R). We describe the substantial impact associated with a recent correction made in the implementation of the Gent-McWilliams ocean mixing scheme (GM), which has a large effect on the simulation of ocean surface temperatures, particularly in the North Atlantic Ocean. The effect of this correction on the Pliocene climate results would not have been easily determined from examining its impact on the preindustrial runs alone, a useful demonstration of how the consequences of code improvements as seen in modern climate control runs do not necessarily portend the impacts in extreme climates. Both the GM-corrected and GM-uncorrected simulations were contributed to the Pliocene Model Intercomparison Project (PlioMIP) Experiment 2. Many findings presented here corroborate results from other PlioMIP multi-model ensemble papers, but we also emphasise features in the ModelE2-R simulations that are unlike the ensemble means. The corrected version yields results that more closely resemble the ocean core data as well as the PRISM3D reconstructions of the mid-Pliocene, especially the dramatic warming in the North Atlantic and Greenland-Iceland-Norwegian Sea, which in the new simulation appears to be far more realistic than previously found with older versions of the GISS model. Our belief is that continued development of key physical routines in the atmospheric model, along with higher resolution and recent corrections to mixing parameterisations in the ocean model, have led to an Earth System Model that will produce more accurate projections of future climate.


2017 ◽  
Vol 51 (7-8) ◽  
pp. 2593-2608 ◽  
Author(s):  
Jürgen Kröger ◽  
Holger Pohlmann ◽  
Frank Sienz ◽  
Jochem Marotzke ◽  
Johanna Baehr ◽  
...  

2009 ◽  
Vol 5 (4) ◽  
pp. 2019-2051 ◽  
Author(s):  
T. Friedrich ◽  
A. Timmermann ◽  
O. Timm ◽  
A. Mouchet ◽  
D. M. Roche

Abstract. The effect of orbital variations on simulated millennial-scale variability of the Atlantic Meridional Overturning Circulation (AMOC) is studied using the earth system model of intermediate complexity LOVECLIM. It is found that for present-day topographic boundary conditions low obliquity values (~22.1°) favor the triggering of internally generated millennial-scale variability in the North Atlantic region. Reducing the obliquity leads to changes of the pause-pulse ratio of the corresponding AMOC oscillations. Stochastic excitations of the density-driven overturning circulation in the Nordic Seas can create regional sea-ice anomalies and a subsequent reorganization of the atmospheric circulation. The resulting remote atmospheric anomalies over the Hudson Bay can release freshwater pulses into the Labrador Sea leading to a subsequent reduction of convective activity. The millennial-scale AMOC oscillations disappear if LGM bathymetry (with closed Hudson Bay) is prescribed. Furthermore, our study documents the marine and terrestrial carbon cycle response to millennial-scale AMOC variability. Our model results support the notion that stadial regimes in the North Atlantic are accompanied by relatively high levels of oxygen in thermocline and intermediate waters off California – in agreement with paleo-proxy data.


2015 ◽  
Vol 72 (2) ◽  
pp. 660-681 ◽  
Author(s):  
David M. Straus ◽  
Erik Swenson ◽  
Cara-Lyn Lappen

Abstract A three-dimensional evolution of Madden–Julian oscillation (MJO) diabatic heating for October–March from satellite data is constructed: the heating propagates eastward for three cycles, modulated by the likelihood for a given MJO phase to occur on a given calendar day. This heating is added to the temperature tendencies of each member of an ensemble of 48 (1 October–31 March) simulations with the Community Earth System Model. The leading two most predictable modes of the planetary wave vertically integrated total (added plus model generated) heating capture 81% of the ensemble-mean variance and form an eastward-propagating oscillation with very high signal-to-noise ratio. The two most predictable modes of the extratropical Northern Hemisphere 200-hPa height form an oscillation, as do those of the 300-hPa height tendency due to synoptic vorticity flux convergence, the 200-hPa Rossby wave source, and the envelope transient kinetic energy. The North Atlantic Oscillation (NAO+) occurs 15–25 days after the MJO convection crosses the 90°E meridian, supported by synoptic vorticity flux convergence and a distinct pattern of Rossby wave source. The daily North Atlantic circulation anomalies are categorized into four circulation regimes with a cluster analysis. The NAO+ and NAO− are equally likely in the control model runs, but the NAO+ is 10% more likely in the model runs with heating, compared to a difference of 14% in reanalyses. The daily occurrence of the NAO+ regime in the heating ensemble shows maxima at times when the leading two optimal modes of height also indicate NAO+ but also shows maxima at other times.


Author(s):  
Zara L. R. Botterell ◽  
Rod Penrose ◽  
Matthew J. Witt ◽  
Brendan J. Godley

AbstractWith over a century of records, we present a detailed analysis of the spatial and temporal occurrence of marine turtle sightings and strandings in the UK and Ireland between 1910 and 2018. Records of hard-shell turtles, including loggerhead turtles (Caretta caretta, N = 240) and Kemp's ridley turtles (Lepidochelys kempii, N = 61), have significantly increased over time. However, in the most recent years there has been a notable decrease in records. The majority of records of hard-shell turtles were juveniles and occurred in the boreal winter months when the waters are coolest in the North-east Atlantic. They generally occurred on the western aspects of the UK and Ireland highlighting a pattern of decreasing records with increasing latitude, supporting previous suggestions that juvenile turtles arrive in these waters via the North Atlantic current systems. Similarly, the majority of the strandings and sightings of leatherback turtles (Dermochelys coriacea, N = 1683) occurred on the western aspects of the UK and the entirety of Ireland's coastline. In contrast to hard-shell turtles, leatherback turtles were most commonly recorded in the boreal summer months with the majority of strandings being adult sized, of which there has been a recent decrease in annual records. The cause of the recent annual decreases in turtle strandings and sightings across all three species is unclear; however, changes to overall population abundance, prey availability, anthropogenic threats and variable reporting effort could all contribute. Our results provide a valuable reference point to assess species range modification due to climate change, identify possible evidence of anthropogenic threats and to assess the future trajectory of marine turtle populations in the North Atlantic.


2021 ◽  
Vol 25 (4) ◽  
pp. 2223-2237
Author(s):  
William Rust ◽  
Mark Cuthbert ◽  
John Bloomfield ◽  
Ron Corstanje ◽  
Nicholas Howden ◽  
...  

Abstract. An understanding of multi-annual behaviour in streamflow allows for better estimation of the risks associated with hydrological extremes. This can enable improved preparedness for streamflow-dependant services, such as freshwater ecology, drinking water supply and agriculture. Recently, efforts have focused on detecting relationships between long-term hydrological behaviour and oscillatory climate systems (such as the North Atlantic Oscillation – NAO). For instance, the approximate 7 year periodicity of the NAO has been detected in groundwater-level records in the North Atlantic region, providing potential improvements to the preparedness for future water resource extremes due to their repetitive, periodic nature. However, the extent to which these 7-year, NAO-like signals are propagated to streamflow, and the catchment processes that modulate this propagation, are currently unknown. Here, we show statistically significant evidence that these 7-year periodicities are present in streamflow (and associated catchment rainfall), by applying multi-resolution analysis to a large data set of streamflow and associated catchment rainfall across the UK. Our results provide new evidence for spatial patterns of NAO periodicities in UK rainfall, with areas of greatest NAO signal found in southwest England, south Wales, Northern Ireland and central Scotland, and show that NAO-like periodicities account for a greater proportion of streamflow variability in these areas. Furthermore, we find that catchments with greater subsurface pathway contribution, as characterised by the baseflow index (BFI), generally show increased NAO-like signal strength and that subsurface response times (as characterised by groundwater response time – GRT), of between 4 and 8 years, show a greater signal presence. Our results provide a foundation of understanding for the screening and use of streamflow teleconnections for improving the practice and policy of long-term streamflow resource management.


2020 ◽  
Vol 6 (29) ◽  
pp. eabb0425 ◽  
Author(s):  
Minhua Qin ◽  
Aiguo Dai ◽  
Wenjian Hua

Earth’s climate fluctuates considerably on decadal-multidecadal time scales, often causing large damages to our society and environment. These fluctuations usually result from internal dynamics, and many studies have linked them to internal climate modes in the North Atlantic and Pacific oceans. Here, we show that variations in volcanic and anthropogenic aerosols have caused in-phase, multidecadal SST variations since 1920 across all ocean basins. These forced variations resemble the Atlantic Multidecadal Oscillation (AMO) in time. Unlike the North Atlantic, where indirect and direct aerosol effects on surface solar radiation drive the multidecadal SST variations, over the tropical central and western Pacific atmospheric circulation response to aerosol forcing plays an important role, whereas aerosol-induced radiation change is small. Our new finding implies that AMO-like climate variations in Eurasia, North America, and other regions may be partly caused by the aerosol forcing, rather than being originated from the North Atlantic SST variations as previously thought.


Sign in / Sign up

Export Citation Format

Share Document