scholarly journals Satellite mapping of PM<sub>2.5</sub> episodes in the wintertime San Joaquin Valley: a “static” model using column water vapor

2020 ◽  
Vol 20 (7) ◽  
pp. 4379-4397 ◽  
Author(s):  
Robert B. Chatfield ◽  
Meytar Sorek-Hamer ◽  
Robert F. Esswein ◽  
Alexei Lyapustin

Abstract. The use of satellite aerosol optical thickness (AOT) from imaging spectrometers has been successful in quantifying and mapping high-PM2.5 (particulate matter with a mass <2.5 µm diameter) episodes for pollution abatement and health studies. However, some regions have high PM2.5 but poor estimation success. The challenges in using AOT from imaging spectrometers to characterize PM2.5 worldwide was especially evident in the wintertime San Joaquin Valley (SJV). The SJV's attendant difficulties of high-albedo surfaces and very shallow, variable vertical mixing also occur in other significantly polluted regions around the world. We report on more accurate PM2.5 maps (where cloudiness permits) for the whole winter period in the SJV (19 November 2012–18 February 2013). Intensive measurements by including NASA aircraft were made for several weeks in that winter, the DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality) California mission. We found success with a relatively simple method based on calibration and checking with surface monitors and a characterization of vertical mixing, and incorporating specific understanding of the region's climatology. We estimate PM2.5 to within ∼7 µg m−3 root mean square error (RMSE) and with R values of ∼0.9, based on remotely sensed multi-angle implementation of atmospheric correction (MAIAC) observations, and certain further work will improve that accuracy. Mapping is at 1 km resolution. This allows a time sequence of mapped aerosols at 1 km for cloud-free days. We describe our technique as a “static estimation.” Estimation procedures like this one, not dependent on well-mapped source strengths or on transport error, should help full source-driven simulations by deconstructing processes. They also provide a rapid method to create a long-term climatology. Essential features of the technique are (a) daily calibration of the AOT to PM2.5 using available surface monitors, and (b) characterization of mixed layer dilution using column water vapor (CWV, otherwise “precipitable water”). We noted that on multi-day timescales both water vapor and particles share near-surface sources and both fall to very low values with altitude; indeed, both are largely removed by precipitation. The existence of layers of H2O or aerosol not within the mixed layer adds complexity, but mixed-effects statistical regression captures essential proportionality of PM2.5 and the ratio variable (AOT ∕ CWV). Accuracy is much higher than previous statistical models and can be extended to the whole Aqua satellite data record. The maps and time series we show suggest a repeated pattern for large valleys like the SJV – progressive stabilization of the mixing height after frontal passages: PM2.5 is somewhat more determined by day-by-day changes in mixing than it is by the progressive accumulation of pollutants (revealed as increasing AOT).

2021 ◽  
pp. 1-56
Author(s):  
Shusaku Sugimoto ◽  
Bo Qiu ◽  
Niklas Schneider

AbstractThe Kanto district, Japan, including Tokyo, has 40 million inhabitants and its summer climate is characterized by high temperature and humidity. The Kuroshio that flows off the southern coast of Kanto district has taken a large meander (LM) path since the summer of 2017 for the first time since the 2004–2005 event. Recently-developed satellite observations detected marked coastal warming off the Kanto-Tokai district during the LM path period. By conducting regional atmospheric model experiments, it is found that summertime coastal warming increases water vapor in the low-level atmosphere through enhanced evaporation from the ocean and influences near-surface winds via the vertical mixing effect over the warming area. These two changes induce an increase in water vapor in Kanto district, leading to an increase in downward longwave radiation at the surface and then surface warming through a local greenhouse effect. Resultantly the summer in Kanto district becomes increasingly hot and humid in LM years, with double the number of discomfort days compared with non-LM years. Our simulations and supplementary observational studies reveal the significant impacts of the LM-induced coastal warming on the summertime climate in Japan, which can exceed previously identified atmospheric teleconnections and climate patterns. Our results could improve weather and seasonal climate forecasts in this region.


Author(s):  
Julia T. Luck ◽  
C. W. Boggs ◽  
S. J. Pennycook

The use of cross-sectional Transmission Electron Microscopy (TEM) has become invaluable for the characterization of the near-surface regions of semiconductors following ion-implantation and/or transient thermal processing. A fast and reliable technique is required which produces a large thin region while preserving the original sample surface. New analytical techniques, particularly the direct imaging of dopant distributions, also require good thickness uniformity. Two methods of ion milling are commonly used, and are compared below. The older method involves milling with a single gun from each side in turn, whereas a newer method uses two guns to mill from both sides simultaneously.


RSC Advances ◽  
2021 ◽  
Vol 11 (22) ◽  
pp. 13245-13255
Author(s):  
Mehdi Davoodi ◽  
Fatemeh Davar ◽  
Mohammad R. Rezayat ◽  
Mohammad T. Jafari ◽  
Mehdi Bazarganipour ◽  
...  

New nanocomposite of zeolitic imidazolate framework-67@magnesium aluminate spinel (ZIF-67@MgAl2O4) has been fabricated by a simple method at room temperature with different weight ratios.


2021 ◽  
Vol 13 (10) ◽  
pp. 1927
Author(s):  
Fuqin Li ◽  
David Jupp ◽  
Thomas Schroeder ◽  
Stephen Sagar ◽  
Joshua Sixsmith ◽  
...  

An atmospheric correction algorithm for medium-resolution satellite data over general water surfaces (open/coastal, estuarine and inland waters) has been assessed in Australian coastal waters. In situ measurements at four match-up sites were used with 21 Landsat 8 images acquired between 2014 and 2017. Three aerosol sources (AERONET, MODIS ocean aerosol and climatology) were used to test the impact of the selection of aerosol optical depth (AOD) and Ångström coefficient on the retrieved accuracy. The initial results showed that the satellite-derived water-leaving reflectance can have good agreement with the in situ measurements, provided that the sun glint is handled effectively. Although the AERONET aerosol data performed best, the contemporary satellite-derived aerosol information from MODIS or an aerosol climatology could also be as effective, and should be assessed with further in situ measurements. Two sun glint correction strategies were assessed for their ability to remove the glint bias. The most successful one used the average of two shortwave infrared (SWIR) bands to represent sun glint and subtracted it from each band. Using this sun glint correction method, the mean all-band error of the retrieved water-leaving reflectance at the Lucinda Jetty Coastal Observatory (LJCO) in north east Australia was close to 4% and unbiased over 14 acquisitions. A persistent bias in the other strategy was likely due to the sky radiance being non-uniform for the selected images. In regard to future options for an operational sun glint correction, the simple method may be sufficient for clear skies until a physically based method has been established.


2015 ◽  
Vol 45 (10) ◽  
pp. 2660-2678 ◽  
Author(s):  
Victor I. Shrira ◽  
Philippe Forget

AbstractInertial band response of the upper ocean to changing wind is studied both theoretically and by analysis of observations in the northwestern Mediterranean. On the nontraditional f plane, because of the horizontal component of the earth’s rotation for waves of inertial band with frequencies slightly below the local inertial frequency f, there is a waveguide in the mixed layer confined from below by the pycnocline. It is argued that when the stratification is shallow these waves are most easily and strongly excited by varying winds as near-inertial oscillations (NIOs). These motions have been overlooked in previous studies because they are absent under the traditional approximation. The observations that employed buoys with thermistors, ADCPs, and two 16.3-MHz Wellen Radar (WERA) HF radars were carried out in the Gulf of Lion in April–June 2006. The observations support the theoretical picture: a pronounced inertial band response occurs only in the presence of shallow stratification and is confined to the mixed layer, and the NIO penetration below the stratified layer is weak. NIO surface magnitude and vertical localization are strongly affected by the presence of even weak density stratification in the upper 10 m. The NIO surface signatures are easily captured by HF radars. Continuous 1.8-yr HF observations near the Porquerolles Island confirm that shallow stratification is indeed the precondition for a strong NIO response. The response sensitivity to stratification provides a foundation for developing HF radar probing of stratification and, indirectly, vertical mixing, including spotting dramatic mixing events and spikes of vertical heat, mass, and momentum exchange.


1992 ◽  
Vol 25 (6) ◽  
pp. 125-139 ◽  
Author(s):  
J. Kappeler ◽  
W. Gujer

To predict the behaviour of biological wastewater treatment plants, the Activated Sludge Model No. 1 is often used. For the application of this model kinetic parameters and wastewater composition must be known. A simple method to estimate kinetic parameters of heterotrophic biomass and COD wastewater fractions is presented. With three different types of batch-tests these parameters and fractions can be determined by measuring oxygen respiration. Our measurements showed that the maximum specific growth rate µmax of heterotrophic biomass depends on temperature, reactor configuration and SRT. In typical wastewater treatment plants of Switzerland the amount of readily biodegradable substrate was generally small (about 9 % of the COD in primary effluent). The same method can also be used to determine kinetic parameters of nitrifying biomass.


Sign in / Sign up

Export Citation Format

Share Document