scholarly journals Evaluation of Southern Ocean cloud in the HadGEM3 general circulation model and MERRA-2 reanalysis using ship-based observations

2020 ◽  
Vol 20 (11) ◽  
pp. 6607-6630 ◽  
Author(s):  
Peter Kuma ◽  
Adrian J. McDonald ◽  
Olaf Morgenstern ◽  
Simon P. Alexander ◽  
John J. Cassano ◽  
...  

Abstract. Southern Ocean (SO) shortwave (SW) radiation biases are a common problem in contemporary general circulation models (GCMs), with most models exhibiting a tendency to absorb too much incoming SW radiation. These biases have been attributed to deficiencies in the representation of clouds during the austral summer months, either due to cloud cover or cloud albedo being too low. The problem has been the focus of many studies, most of which utilised satellite datasets for model evaluation. We use multi-year ship-based observations and the CERES spaceborne radiation budget measurements to contrast cloud representation and SW radiation in the atmospheric component Global Atmosphere (GA) version 7.1 of the HadGEM3 GCM and the MERRA-2 reanalysis. We find that the prevailing bias is negative in GA7.1 and positive in MERRA-2. GA7.1 performs better than MERRA-2 in terms of absolute SW bias. Significant errors of up to 21 W m−2 (GA7.1) and 39 W m−2 (MERRA-2) are present in both models in the austral summer. Using ship-based ceilometer observations, we find low cloud below 2 km to be predominant in the Ross Sea and the Indian Ocean sectors of the SO. Utilising a novel surface lidar simulator developed for this study, derived from an existing Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP) – active remote sensing simulator (ACTSIM) spaceborne lidar simulator, we find that GA7.1 and MERRA-2 both underestimate low cloud and fog occurrence relative to the ship observations on average by 4 %–9 % (GA7.1) and 18 % (MERRA-2). Based on radiosonde observations, we also find the low cloud to be strongly linked to boundary layer atmospheric stability and the sea surface temperature. GA7.1 and MERRA-2 do not represent the observed relationship between boundary layer stability and clouds well. We find that MERRA-2 has a much greater proportion of cloud liquid water in the SO in austral summer than GA7.1, a likely key contributor to the difference in the SW radiation bias. Our results suggest that subgrid-scale processes (cloud and boundary layer parameterisations) are responsible for the bias and that in GA7.1 a major part of the SW radiation bias can be explained by cloud cover underestimation, relative to underestimation of cloud albedo.

2019 ◽  
Author(s):  
Peter Kuma ◽  
Adrian J. McDonald ◽  
Olaf Morgenstern ◽  
Simon P. Alexander ◽  
John J. Cassano ◽  
...  

Abstract. Southern Ocean (SO) shortwave (SW) radiation biases are a common problem in contemporary general circulation models (GCMs), with most models exhibiting a tendency to absorb too much incoming SW radiation. These biases have been attributed to deficiencies in the representation of clouds during the austral summer months, either due to cloud cover or cloud optical thickness being too low. The problem has been the focus of many studies, most of which utilised satellite datasets for model evaluation. We use multi-year ship based observations and the CERES spaceborne radiation budget measurements to contrast cloud representation and SW radiation in the atmospheric component Global Atmosphere (GA) version 7.0 and 7.1 of the HadGEM3 GCM and the MERRA-2 reanalysis. We find that MERRA-2 is biased in the opposite direction to GA (reflects too much SW radiation). In addition, MERRA-2 performs better in terms of absolute SW bias than nudged runs of GA7.0 and GA7.1 in the 60–70° S latitude band. GA7.1 reduces the SO SW radiation biases relative to GA7.0, but significant errors remain at up to 20 W m−2 between 60 and 70° S in the austral summer months. Using ship-based ceilometer observations, we find low cloud below 2 km to be predominant in the Ross Sea and the Indian Ocean sector of the SO. Utilising a novel surface lidar simulator developed for this study, derived from an existing COSP-ACTSIM spaceborne lidar simulator, we find that GA7.0 and MERRA-2 both underestimate low cloud occurrence relative to the ship observations by 18–25 % on average, though the cloud cover in MERRA-2 is closer to observations by about 7 %. Based on radiosonde observations, we also find the low cloud to be strongly linked to boundary-layer atmospheric stability and the sea surface temperature. GA7.0 and MERRA-2 agree well with observations in terms of boundary-layer stability, suggesting that subgrid-scale parametrisations do not generate enough cloud in response to the thermodynamic profile of the atmosphere and the surface temperature. Our analysis shows that MERRA-2 has a much greater proportion of cloud liquid water in the SO in January than GA7.0, a likely key contributor to the difference in SW radiation. We show that boundary-layer stability and relative humidity fields are very similar in GA7.0 and MERRA-2, and unlikely to be the cause of the different cloud representation, suggesting that subgrid-scale parametrisations are responsible for the difference between the models.


2021 ◽  
Author(s):  
Fabien Desbiolles ◽  
Agostino Meroni ◽  
Maria Alberi ◽  
Mostafa E. Hamouda ◽  
Michele Giurato ◽  
...  

<p>Sea Surface Temperature (SST) is known to affect the marine atmospheric boundary layer (MABL) at scales smaller than O(1000 km) via different mechanisms. In particular, the oceanic thermal forcing induces modification in the wind speed, its divergence and its curl by the action of the Downward Momentum Mixing (DMM) mechanism and the Pressure Adjustment (PA) one. </p><p>By analyzing 25 years of observations of surface wind speed and SST in the Mediterranean, it is found that the probability of observing surface wind convergence is significantly higher over a thermal oceanic front crossed from the warm to the cold side, in agreement with the DMM mechanism. Physically, this is due to a deceleration of the surface wind over the cold side of the SST front because of the increased atmospheric stability over the cold water. The strongest response in terms of surface convergence is found when atmospheric fronts (already characterized by strong surface convergence) cross SST gradients from the warm to the cold side.</p><p>Using 25 years of ERA5 reanalysis data, it is also found that the wind divergence variability within the MABL (until about 925 hPa) is partially driven by mesoscale SST patterns via their effect on the boundary layer stability. This results in a cloud cover and rainfall response: when a wind blows from warm-to-cold (cold-to-warm) ocean patterns, a converging (diverging) cell is enhanced, increasing (decreasing) low-cloud cover and favouring rainfall. Specifically, strong warm-to-cold fronts (the upper 25th percentile) are associated with a mean increase of cloud cover of 10±5% and a mean increase in the probability of a rain event of 15±6%, with respect to the average values. </p><p>The cloud and rainfall dependence on SST fronts is more pronounced in fall than in the rest of the year, probably due to the stronger SST gradients present at the end of the summer season. The effects on cloud cover, in particular, are a preferential way through which mesoscale SST structures can impact the radiation budget and, thus, the Earth climate.</p>


2012 ◽  
Vol 25 (14) ◽  
pp. 4963-4974 ◽  
Author(s):  
Mao-Sung Yao ◽  
Ye Cheng

Abstract The response of cloud simulations to turbulence parameterizations is studied systematically using the GISS general circulation model (GCM) E2 employed in the Intergovernmental Panel on Climate Change’s (IPCC) Fifth Assessment Report (AR5). Without the turbulence parameterization, the relative humidity (RH) and the low cloud cover peak unrealistically close to the surface; with the dry convection or with only the local turbulence parameterization, these two quantities improve their vertical structures, but the vertical transport of water vapor is still weak in the planetary boundary layers (PBLs); with both local and nonlocal turbulence parameterizations, the RH and low cloud cover have better vertical structures in all latitudes due to more significant vertical transport of water vapor in the PBL. The study also compares the cloud and radiation climatologies obtained from an experiment using a newer version of turbulence parameterization being developed at GISS with those obtained from the AR5 version. This newer scheme differs from the AR5 version in computing nonlocal transports, turbulent length scale, and PBL height and shows significant improvements in cloud and radiation simulations, especially over the subtropical eastern oceans and the southern oceans. The diagnosed PBL heights appear to correlate well with the low cloud distribution over oceans. This suggests that a cloud-producing scheme needs to be constructed in a framework that also takes the turbulence into consideration.


1997 ◽  
Vol 25 ◽  
pp. 111-115 ◽  
Author(s):  
Achim Stössel

This paper investigates the long-term impact of sea ice on global climate using a global sea-ice–ocean general circulation model (OGCM). The sea-ice component involves state-of-the-art dynamics; the ocean component consists of a 3.5° × 3.5° × 11 layer primitive-equation model. Depending on the physical description of sea ice, significant changes are detected in the convective activity, in the hydrographic properties and in the thermohaline circulation of the ocean model. Most of these changes originate in the Southern Ocean, emphasizing the crucial role of sea ice in this marginally stably stratified region of the world's oceans. Specifically, if the effect of brine release is neglected, the deep layers of the Southern Ocean warm up considerably; this is associated with a weakening of the Southern Hemisphere overturning cell. The removal of the commonly used “salinity enhancement” leads to a similar effect. The deep-ocean salinity is almost unaffected in both experiments. Introducing explicit new-ice thickness growth in partially ice-covered gridcells leads to a substantial increase in convective activity, especially in the Southern Ocean, with a concomitant significant cooling and salinification of the deep ocean. Possible mechanisms for the resulting interactions between sea-ice processes and deep-ocean characteristics are suggested.


2010 ◽  
Vol 40 (5) ◽  
pp. 880-899 ◽  
Author(s):  
Matthew R. Mazloff ◽  
Patrick Heimbach ◽  
Carl Wunsch

Abstract An eddy-permitting general circulation model of the Southern Ocean is fit by constrained least squares to a large observational dataset during 2005–06. Data used include Argo float profiles, CTD synoptic sections, Southern Elephant Seals as Oceanographic Samplers (SEaOS) instrument-mounted seal profiles, XBTs, altimetric observations [Envisat, Geosat, Jason-1, and Ocean Topography Experiment (TOPEX)/Poseidon], and infrared and microwave radiometer observed sea surface temperature. An adjoint model is used to determine descent directions in minimizing a misfit function, each of whose elements has been weighted by an estimate of the observational plus model error. The model is brought into near agreement with the data by adjusting its control vector, here consisting of initial and meteorological boundary conditions. Although total consistency has not yet been achieved, the existing solution is in good agreement with the great majority of the 2005 and 2006 Southern Ocean observations and better represents these data than does the World Ocean Atlas 2001 (WOA01) climatological product. The estimate captures the oceanic temporal variability and in this respect represents a major improvement upon earlier static inverse estimates. During the estimation period, the Drake Passage volume transport is 153 ± 5 Sv (1 Sv ≡ 106 m3 s−1). The Ross and Weddell polar gyre transports are 20 ± 5 Sv and 40 ± 8 Sv, respectively. Across 32°S there is a surface meridional overturning cell of 12 ± 12 Sv, an intermediate cell of 17 ± 12 Sv, and an abyssal cell of 13 ± 6 Sv. The northward heat and freshwater anomaly transports across 30°S are −0.3 PW and 0.7 Sv, with estimated uncertainties of 0.5 PW and 0.2 Sv. The net rate of wind work is 2.1 ± 1.1 TW. Southern Ocean theories involving short temporal- and spatial-scale dynamics may now be tested with a dynamically and thermodynamically realistic general circulation model solution that is known to be compatible with the modern observational datasets.


2017 ◽  
Vol 122 (13) ◽  
pp. 6818-6843 ◽  
Author(s):  
Etienne Vignon ◽  
Frédéric Hourdin ◽  
Christophe Genthon ◽  
Hubert Gallée ◽  
Eric Bazile ◽  
...  

2018 ◽  
Vol 35 (7) ◽  
pp. 1505-1519 ◽  
Author(s):  
Yu-Chiao Liang ◽  
Matthew R. Mazloff ◽  
Isabella Rosso ◽  
Shih-Wei Fang ◽  
Jin-Yi Yu

AbstractThe ability to construct nitrate maps in the Southern Ocean (SO) from sparse observations is important for marine biogeochemistry research, as it offers a geographical estimate of biological productivity. The goal of this study is to infer the skill of constructed SO nitrate maps using varying data sampling strategies. The mapping method uses multivariate empirical orthogonal functions (MEOFs) constructed from nitrate, salinity, and potential temperature (N-S-T) fields from a biogeochemical general circulation model simulation Synthetic N-S-T datasets are created by sampling modeled N-S-T fields in specific regions, determined either by random selection or by selecting regions over a certain threshold of nitrate temporal variances. The first 500 MEOF modes, determined by their capability to reconstruct the original N-S-T fields, are projected onto these synthetic N-S-T data to construct time-varying nitrate maps. Normalized root-mean-square errors (NRMSEs) are calculated between the constructed nitrate maps and the original modeled fields for different sampling strategies. The sampling strategy according to nitrate variances is shown to yield maps with lower NRMSEs than mapping adopting random sampling. A k-means cluster method that considers the N-S-T combined variances to identify key regions to insert data is most effective in reducing the mapping errors. These findings are further quantified by a series of mapping error analyses that also address the significance of data sampling density. The results provide a sampling framework to prioritize the deployment of biogeochemical Argo floats for constructing nitrate maps.


2020 ◽  
Vol 20 (6) ◽  
pp. 3415-3438 ◽  
Author(s):  
Hendrik Andersen ◽  
Jan Cermak ◽  
Julia Fuchs ◽  
Peter Knippertz ◽  
Marco Gaetani ◽  
...  

Abstract. Fog is a defining characteristic of the climate of the Namib Desert, and its water and nutrient input are important for local ecosystems. In part due to sparse observation data, the local mechanisms that lead to fog occurrence in the Namib are not yet fully understood, and to date, potential synoptic-scale controls have not been investigated. In this study, a recently established 14-year data set of satellite observations of fog and low clouds in the central Namib is analyzed in conjunction with reanalysis data in order to identify synoptic-scale patterns associated with fog and low-cloud variability in the central Namib during two seasons with different spatial fog occurrence patterns. It is found that during both seasons, mean sea level pressure and geopotential height at 500 hPa differ markedly between fog/low-cloud and clear days, with patterns indicating the presence of synoptic-scale disturbances on fog and low-cloud days. These regularly occurring disturbances increase the probability of fog and low-cloud occurrence in the central Namib in two main ways: (1) an anomalously dry free troposphere in the coastal region of the Namib leads to stronger longwave cooling of the marine boundary layer, increasing low-cloud cover, especially over the ocean where the anomaly is strongest; (2) local wind systems are modulated, leading to an onshore anomaly of marine boundary-layer air masses. This is consistent with air mass back trajectories and a principal component analysis of spatial wind patterns that point to advected marine boundary-layer air masses on fog and low-cloud days, whereas subsiding continental air masses dominate on clear days. Large-scale free-tropospheric moisture transport into southern Africa seems to be a key factor modulating the onshore advection of marine boundary-layer air masses during April, May, and June, as the associated increase in greenhouse gas warming and thus surface heating are observed to contribute to a continental heat low anomaly. A statistical model is trained to discriminate between fog/low-cloud and clear days based on information on large-scale dynamics. The model accurately predicts fog and low-cloud days, illustrating the importance of large-scale pressure modulation and advective processes. It can be concluded that regional fog in the Namib is predominantly of an advective nature and that fog and low-cloud cover is effectively maintained by increased cloud-top radiative cooling. Seasonally different manifestations of synoptic-scale disturbances act to modify its day-to-day variability and the balance of mechanisms leading to its formation and maintenance. The results are the basis for a new conceptual model of the synoptic-scale mechanisms that control fog and low-cloud variability in the Namib Desert and will guide future studies of coastal fog regimes.


2019 ◽  
Vol 49 (10) ◽  
pp. 2553-2570 ◽  
Author(s):  
Mads B. Poulsen ◽  
Markus Jochum ◽  
James R. Maddison ◽  
David P. Marshall ◽  
Roman Nuterman

AbstractAn interpretation of eddy form stress via the geometry described by the Eliassen–Palm flux tensor is explored. Complimentary to previous works on eddy Reynolds stress geometry, this study shows that eddy form stress is fully described by a vertical ellipse, whose size, shape, and orientation with respect to the mean flow shear determine the strength and direction of vertical momentum transfers. Following a recent proposal, this geometric framework is here used to form a Gent–McWilliams eddy transfer coefficient that depends on eddy energy and a nondimensional geometric parameter α, bounded in magnitude by unity. The parameter α expresses the efficiency by which eddies exchange energy with baroclinic mean flow via along-gradient eddy buoyancy flux—a flux equivalent to eddy form stress along mean buoyancy contours. An eddy-resolving ocean general circulation model is used to estimate the spatial structure of α in the Southern Ocean and assess its potential to form a basis for parameterization. The eddy efficiency α averages to a low but positive value of 0.043 within the Antarctic Circumpolar Current, consistent with an inefficient eddy field extracting energy from the mean flow. It is found that the low eddy efficiency is mainly the result of that eddy buoyancy fluxes are weakly anisotropic on average. The eddy efficiency is subject to pronounced vertical structure and is maximum at ~3-km depth, where eddy buoyancy fluxes tend to be directed most downgradient. Since α partly sets the eddy form stress in the Southern Ocean, a parameterization for α must reproduce its vertical structure to provide a faithful representation of vertical stress divergence and eddy forcing.


Sign in / Sign up

Export Citation Format

Share Document