scholarly journals Sea salt emission, transportation and influence on nitrate simulation: a case study in Europe

Author(s):  
Ying Chen ◽  
Yafang Cheng ◽  
Nan Ma ◽  
Ralf Wolke ◽  
Stephan Nordmann ◽  
...  

Abstract. Sea salt aerosol (SSA) is one of the major components of primary aerosols and has significant impact on the formation of secondary inorganic aerosol particles on a global scale. In this study, the fully online coupled WRF-Chem model was utilized to evaluate the SSA emission scheme and its influence on the nitrate simulation in a case study in Europe during September 10–20, 2013. Meteorological conditions near the surface, wind pattern, and thermal stratification structure were well reproduced by the model. Nonetheless, coarse mode (PM1–10) particle mass concentration was substantially overestimated due to the overestimation of SSA and nitrate. Compared to filter measurements at 4 EMEP stations (coastal stations: Bilthoven, Kollumerwaard and Vredepeel; inland station: Melpitz), the modeled SSA concentrations were overestimated by a factor of 8–20. We found that the overestimation was mainly caused by the overestimated SSA emission over North Sea during September 16–20. Over the coastal regions, the SSA was injected into the continental free troposphere through an “aloft bridge” (about 500 to 1000 meter above the ground), a result of the different thermodynamic properties and planetary boundary layer (PBL) structure between continental and marine regions. The injected SSA was further transported inland and mixed downward to the surface through downdraft and PBL turbulence. This process broadened the influence of SSA to a larger downwind region, for example, leading to an overestimation of SSA at Melpitz, Germany by a factor of ~20. As a result, nitrate partitioning fraction (ratio between particulate nitrate and the summation of particulate nitrate and gas-phase nitric acid) increased by about 0.2 for the coarse mode nitrate due to the overestimation of SSA at Melpitz, but no significant difference in the partitioning fraction for the fine mode nitrate. About 140 % overestimation of the coarse mode nitrate was resulted from the influence of SSA at Melpitz. On the other hand, the overestimation of SSA inhibited the nitrate formation in the fine mode by about 20 %, because of the increased consumption of precursors by coarse mode nitrate formation.

2016 ◽  
Vol 16 (18) ◽  
pp. 12081-12097 ◽  
Author(s):  
Ying Chen ◽  
Yafang Cheng ◽  
Nan Ma ◽  
Ralf Wolke ◽  
Stephan Nordmann ◽  
...  

Abstract. Sea salt aerosol (SSA) is one of the major components of primary aerosols and has significant impact on the formation of secondary inorganic particles mass on a global scale. In this study, the fully online coupled WRF-Chem model was utilized to evaluate the SSA emission scheme and its influence on the nitrate simulation in a case study in Europe during 10–20 September 2013. Meteorological conditions near the surface, wind pattern and thermal stratification structure were well reproduced by the model. Nonetheless, the coarse-mode (PM1 − 10) particle mass concentration was substantially overestimated due to the overestimation of SSA and nitrate. Compared to filter measurements at four EMEP stations (coastal stations: Bilthoven, Kollumerwaard and Vredepeel; inland station: Melpitz), the model overestimated SSA concentrations by a factor of 8–20. We found that this overestimation was mainly caused by overestimated SSA emissions over the North Sea during 16–20 September. Over the coastal regions, SSA was injected into the continental free troposphere through an “aloft bridge” (about 500 to 1000 m above the ground), a result of the different thermodynamic properties and planetary boundary layer (PBL) structure between continental and marine regions. The injected SSA was further transported inland and mixed downward to the surface through downdraft and PBL turbulence. This process extended the influence of SSA to a larger downwind region, leading, for example, to an overestimation of SSA at Melpitz, Germany, by a factor of  ∼  20. As a result, the nitrate partitioning fraction (ratio between particulate nitrate and the summation of particulate nitrate and gas-phase nitric acid) increased by about 20 % for the coarse-mode nitrate due to the overestimation of SSA at Melpitz. However, no significant difference in the partitioning fraction for the fine-mode nitrate was found. About 140 % overestimation of the coarse-mode nitrate resulted from the influence of SSA at Melpitz. In contrast, the overestimation of SSA inhibited the nitrate particle formation in the fine mode by about 20 % because of the increased consumption of precursor by coarse-mode nitrate formation.


2006 ◽  
Vol 6 (12) ◽  
pp. 4809-4821 ◽  
Author(s):  
G. Myhre ◽  
A. Grini ◽  
S. Metzger

Abstract. A thermodynamical model for treatment of gas/aerosol partitioning of semi volatile inorganic aerosols has been implemented in a global chemistry and aerosol transport model (Oslo CTM2). The sulphur cycle and sea salt particles have been implemented earlier in the Oslo CTM2 and the focus of this study is on nitrate partitioning to the aerosol phase and if particulate nitrate is expected to form in fine or coarse mode aerosols. Modelling of the formation of fine mode nitrate particles is complicated since it depends on other aerosol components and aerosol precursors as well as meteorological condition. The surface concentrations from the model are compared to observed surface concentrations at around 20 sites around Europe for nitrate and ammonium. The agreement for nitrate is good but the modelled values are somewhat underestimated compared to observations at high concentrations, whereas for ammonium the agreement is very good. However, we underscore that such a comparison is not of large importance for the aerosol optical depth of particulate nitrate since the vertical profile of aerosol components and their precursors are so important. Fine mode nitrate formation depends on vertical profiles of both ammonia/ammonium and sulphate. The model results show that fine mode particulate nitrate play a non-negligible role in the total aerosol composition in certain industrialized regions and therefore have a significant local radiative forcing. On a global scale the aerosol optical depth of fine mode nitrate is relatively small due to limited availability of ammonia and loss to larger sea salt particles. Inclusion of sea salt in the calculations reduces the aerosol optical depth and burden of fine mode nitrate by 25% on a global scale but with large regional variations.


2007 ◽  
Vol 7 (4) ◽  
pp. 10179-10203 ◽  
Author(s):  
T. Sakai ◽  
T. Nagai ◽  
T. Kobayashi ◽  
A. Yamazaki ◽  
A. Uchiyama ◽  
...  

Abstract. Elastic and polarization lidar was used to measure the vertical profiles of aerosol backscattering coefficients at wavelengths of 355, 532, 735, and 1064 nm, and the depolarization ratio at 532 nm in order to study the aerosol properties in the free troposphere over Tsukuba, Japan, in 2006. An elevated dust layer was observed at altitudes between 3 and 8.5 km on 1 April during the Asian dust period. The wavelength exponents of the aerosol backscattering coefficient (k) were –0.1 to 0.5, and the depolarization ratio (δp) was 25% for the dust layer, suggesting the predominance of supermicrometer-sized (coarse mode) nonspherical particles. An aerosol layer observed at altitudes between 1.5 and 5 km on 19 October during the less-dust period exhibited the values of k=1.0 to 1.6 and δp=1 to 13%, suggesting the predominance of submicrometer-sized (fine mode) particles. In those layers, the values of k and δp varied with height; they were also negatively correlated, suggesting that the proportion of the coarse nonspherical particles to total particles varied. The particle size distributions estimated from the observed values and the theoretical computation revealed number mode radii of 0.3 &mum; for the coarse mode and 0.1 &mum; for the fine mode, assuming bimodal distribution. These results were consistent with those obtained from the sky-radiometer measurements, although they revealed another mode in the larger radius. The column volume concentration derived from the lidar was 48% lower than that derived from the sky-radiometer on 1 April and 16% lower on 19 October. The optical thickness derived from the lidar was 12% lower than that obtained from the sky-radiometer on 1 April and 29% higher on 19 October. Further case study is necessary to validate the method for estimating aerosol properties based on the lidar measurement.


2015 ◽  
Vol 15 (18) ◽  
pp. 26509-26554 ◽  
Author(s):  
D. K. Deshmukh ◽  
K. Kawamura ◽  
M. Lazaar ◽  
B. Kunwar ◽  
S. K. R. Boreddy

Abstract. Size-segregated aerosols (9-stages from < 0.43 to > 11.3 μm in diameter) were collected at Cape Hedo, Okinawa in spring 2008 and analyzed for water-soluble diacids (C2–\\C12), ω-oxoacids (ωC2–ωC9), pyruvic acid, benzoic acid and α-dicarbonyls (C2–C3) as well as water-soluble organic carbon (WSOC), organic carbon (OC) and major ions. In all the size-segregated aerosols, oxalic acid (C2) was found as the most abundant species followed by malonic and succinic acids whereas glyoxylic acid (ωC2) was the dominant oxoacid and glyoxal (Gly) was more abundant than methylglyoxal. Diacids (C2–C5), ωC2 and Gly as well as WSOC and OC peaked at 0.65–1.1 μm in fine mode whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at 3.3–4.7 μm in coarse mode. Sulfate and ammonium are enriched in fine mode whereas sodium and chloride are in coarse mode. These results imply that water-soluble species in the marine aerosols could act as cloud condensation nuclei (CCN) to develop the cloud cover over the western North Pacific Rim. The organic species are likely produced by a combination of gas-phase photooxidation, and aerosol-phase or in-cloud processing during long-range transport. The coarse mode peaks of malonic and succinic acids were obtained in the samples with marine air masses, suggesting that they may be associated with the reaction on sea salt particles. Bimodal size distributions of longer-chain diacid (C9) and oxoacid (ωC9) with a major peak in the coarse mode suggest their production by photooxidation of biogenic unsaturated fatty acids via heterogeneous reactions on sea salt particles.


2012 ◽  
Vol 29 (5) ◽  
pp. 668-682 ◽  
Author(s):  
Vladimir N. Kapustin ◽  
Antony D. Clarke ◽  
Steven G. Howell ◽  
Cameron S. McNaughton ◽  
Vera L. Brekhovskikh ◽  
...  

Abstract Topography-induced steady-state accelerated wind flow in the Alenuihaha Channel between the islands of Hawaii and Maui provides about 100 km of fetch with winds that can nearly double over trade wind speed. Here ship- and aircraft-based observations of meteorological parameters and aerosols in Hawaii’s orographic natural “wind tunnel” are used for the study of sea salt aerosol (SSA) production, evolution, and related optical effects under clean oceanic conditions. There are certain advantages of channel measurements, such as a broad and uniform upstream area usually filled with background aerosol, stationary flow, and known fetch, but also some difficulties, like vigorous entrainment and persistent presence of organized structures (rolls). It is found that marine boundary layer (MBL) rolls are a common occurrence near the Hawaiian Islands even when cloud streets are not visible in satellite imagery. The presence of rolls tends to enhance the variability of ambient aerosol concentration and probably affects production of primary sea salt aerosol and entrainment from above. The possibility of channel measurements of the size-dependent flux of SSA is explored using a concentration buildup method as surface wind speeds range from 7 to 11 m s−1. Production of SSA particles with dry diameter as small as 0.18 μm was observed. General agreement with reported SSA fluxes was found.


Author(s):  
Chung Taing ◽  
Katherine L. Ackerman ◽  
Alison D. Nugent ◽  
Jorgen B. Jensen

AbstractSea salt aerosol(s) (SSA) play a significant role in the atmosphere through aerosol direct and indirect effects, and in atmospheric chemistry as a source of tropospheric bromine. In-situ measurements of coarse-mode SSA particles are limited because of their low concentration and relatively large sizes (dry radius, rd > 0.5 μm). With this in mind, a new, low-cost, easily usable method for sampling coarse-mode SSA particles in the marine boundary layer was developed. A SSA particle sampler that uses an impaction method was designed and built using 3D printing and Arduino microcontrollers and sensors. It exposes polycarbonate slides to ambient airflow remotely on a kite-based platform to capture coarse-mode SSA particles. Because it is a smaller version of the Giant Nucleus Impactor (GNI), designed for use on aircraft, it is named the miniature-Giant Nucleus Impactor, or “mini-GNI”. After sample collection, the same optical microscope methodology utilized by the GNI was used to analyze the wetted salt particles that impacted onto the slides. In this proof-of-concept study, multiple mini-GNIs were attached serially to a kite string, allowing for sampling at multiple altitudes simultaneously. The robustness of the results from this new instrument and methodology for sampling at ambient RH (~ 75 %) the SSA particle size distribution with rd > 3.3 μ m are compared with a similar study. We find that the SSA particle number concentration decreases weakly with altitude and shows no correlation to instantaneous U10 wind speed along the windward coastline of O‘ ahu in the Hawaiian Islands.


Sign in / Sign up

Export Citation Format

Share Document