scholarly journals Symptoms of total ozone recovery inside the Antarctic vortex during Austral spring

2017 ◽  
Author(s):  
Andrea Pazmino ◽  
Sophie Godin-Beekmann ◽  
Alain Hauchecorne ◽  
Chantal Claud ◽  
Sergey Khaykin ◽  
...  

Abstract. The long-term evolution of total ozone column inside the Antarctic polar vortex is investigated over the 1980–2016 period. Trend analyses are performed using a multilinear regression (MLR) model based on various proxies (heat flux, Quasi-Biennial Oscillation, solar flux, Antarctic Oscillation and aerosols). Annual total ozone column corresponding to the mean monthly values inside the vortex in September and during the period of maximum ozone depletion from September 15th to October 15th are used. Total ozone columns from combined SBUV, TOMS and OMI satellite datasets and the Multi-Sensor Reanalysis (MSR-2) dataset are considered in the study. Ozone trends are computed by a piecewise trend model (PWT) before and after the turnaround in 2001. In order to evaluate total ozone within the vortex, two classification methods are used, based on the potential vorticity gradient as a function of equivalent latitude. The first standard one considers this gradient at a single isentropic level (475 K or 550 K), while the second one uses a range of isentropic levels between 400 K and 600 K. The regression model includes a new proxy that represents the stability of the vortex during the studied month period. The determination coefficient (R2) between observations and modeled values increases by ~ 0.05 when this proxy is included in the MLR model. The higher R2 (0.93–0.95) and the minimum residuals are observed for the second classification method for both datasets and months periods. Trends in September are statistically significant at 2 sigma level over 2001–2016 period with values ranging between 1.85 and 2.67 DU yr−1 depending on the methods and data sets. This result confirms the recent studies of Antarctic ozone healing during that month. Trends after 2001 are 2 to 3 times lower than before the turnaround year as expected from the response to the slowly ozone-depleting substances decrease in Polar regions. Estimated trends in the 15 Sept–15 Oct period are smaller than in September. They vary from 1.15 to 1.78 DU yr−1 and are hardly significant at 2σ level. Ozone recovery is also confirmed by a steady decrease of the relative area of total ozone values lower than 150 DU within the vortex in the 15 Sept–15 Oct period since 2010. Comparison of the evolution of the ozone hole area in September and October shows a decrease in September, confirming the later formation of the ozone hole during that month.

2018 ◽  
Vol 18 (10) ◽  
pp. 7557-7572 ◽  
Author(s):  
Andrea Pazmiño ◽  
Sophie Godin-Beekmann ◽  
Alain Hauchecorne ◽  
Chantal Claud ◽  
Sergey Khaykin ◽  
...  

Abstract. The long-term evolution of total ozone column inside the Antarctic polar vortex is investigated over the 1980–2017 period. Trend analyses are performed using a multilinear regression (MLR) model based on various proxies for the evaluation of ozone interannual variability (heat flux, quasi-biennial oscillation, solar flux, Antarctic oscillation and aerosols). Annual total ozone column measurements corresponding to the mean monthly values inside the vortex in September and during the period of maximum ozone depletion from 15 September to 15 October are used. Total ozone columns from the Multi-Sensor Reanalysis version 2 (MSR-2) dataset and from a combined record based on TOMS and OMI satellite datasets with gaps filled by MSR-2 (1993–1995) are considered in the study. Ozone trends are computed by a piece-wise trend (PWT) proxy that includes two linear functions before and after the turnaround year in 2001 and a parabolic function to account for the saturation of the polar ozone destruction. In order to evaluate average total ozone within the vortex, two classification methods are used, based on the potential vorticity gradient as a function of equivalent latitude. The first standard one considers this gradient at a single isentropic level (475 or 550 K), while the second one uses a range of isentropic levels between 400 and 600 K. The regression model includes a new proxy (GRAD) linked to the gradient of potential vorticity as a function of equivalent latitude and representing the stability of the vortex during the studied month. The determination coefficient (R2) between observations and modelled values increases by ∼ 0.05 when this proxy is included in the MLR model. Highest R2 (0.92–0.95) and minimum residuals are obtained for the second classification method for both datasets and months. Trends in September over the 2001–2017 period are statistically significant at 2σ level with values ranging between 1.84 ± 1.03 and 2.83 ± 1.48 DU yr−1 depending on the methods and considered proxies. This result confirms the recent studies of Antarctic ozone healing during that month. Trends from 2001 are 2 to 3 times smaller than before the turnaround year, as expected from the response to the slowly ozone-depleting substances decrease in polar regions. For the first time, significant trends are found for the period of maximum ozone depletion. Estimated trends from 2001 for the 15 September–15 October period over 2001–2017 vary from 1.21 ± 0.83 to 1.96 DU ± 0.99 yr−1 and are significant at 2σ level. MLR analysis is also applied to the ozone mass deficit (OMD) metric for both periods, considering a threshold at 220 DU and total ozone columns south of 60∘ S. Significant trend values are observed for all cases and periods. A decrease of OMD of 0.86 ± 0.36 and 0.65 ± 0.33 Mt yr−1 since 2001 is observed in September and 15 September–15 October, respectively. Ozone recovery is also confirmed by a steady decrease of the relative area of total ozone values lower than 175 DU within the vortex in the 15 September–15 October period since 2010 and a delay in the occurrence of ozone levels below 125 DU since 2005.


2021 ◽  
Vol 13 (8) ◽  
pp. 1594
Author(s):  
Songkang Kim ◽  
Sang-Jong Park ◽  
Hana Lee ◽  
Dha Hyun Ahn ◽  
Yeonjin Jung ◽  
...  

The ground-based ozone observation instrument, Brewer spectrophotometer (Brewer), was used to evaluate the quality of the total ozone column (TOC) produced by multiple polar-orbit satellite measurements at three stations in Antarctica (King Sejong, Jang Bogo, and Zhongshan stations). While all satellite TOCs showed high correlations with Brewer TOCs (R = ~0.8 to 0.9), there are some TOC differences among satellite data in austral spring, which is mainly attributed to the bias of Atmospheric Infrared Sounder (AIRS) TOC. The quality of satellite TOCs is consistent between Level 2 and 3 data, implying that “which satellite TOC is used” can induce larger uncertainty than “which spatial resolution is used” for the investigation of the Antarctic TOC pattern. Additionally, the quality of satellite TOC is regionally different (e.g., OMI TOC is a little higher at the King Sejong station, but lower at the Zhongshan station than the Brewer TOC). Thus, it seems necessary to consider the difference of multiple satellite data for better assessing the spatiotemporal pattern of Antarctic TOC.


2021 ◽  
Vol 21 (2) ◽  
pp. 617-633
Author(s):  
Martin Dameris ◽  
Diego G. Loyola ◽  
Matthias Nützel ◽  
Melanie Coldewey-Egbers ◽  
Christophe Lerot ◽  
...  

Abstract. Ozone data derived from the Tropospheric Monitoring Instrument (TROPOMI) sensor on board the Sentinel-5 Precursor satellite show exceptionally low total ozone columns in the polar region of the Northern Hemisphere (Arctic) in spring 2020. Minimum total ozone column values around or below 220 Dobson units (DU) were seen over the Arctic for 5 weeks in March and early April 2020. Usually the persistence of such low total ozone column values in spring is only observed in the polar Southern Hemisphere (Antarctic) and not over the Arctic. These record low total ozone columns were caused by a particularly strong polar vortex in the stratosphere with a persistent cold stratosphere at higher latitudes, a prerequisite for ozone depletion through heterogeneous chemistry. Based on the ERA5, which is the fifth generation of the European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis, the Northern Hemisphere winter 2019/2020 (from December to March) showed minimum polar cap temperatures consistently below 195 K around 20 km altitude, which enabled enhanced formation of polar stratospheric clouds. The special situation in spring 2020 is compared and discussed in context with two other Northern Hemisphere spring seasons, namely those in 1997 and 2011, which also displayed relatively low total ozone column values. However, during these years, total ozone columns below 220 DU over several consecutive days were not observed in spring. The similarities and differences of the atmospheric conditions of these three events and possible explanations for the observed features are presented and discussed. It becomes apparent that the monthly mean of the minimum total ozone column value for March 2020 (221 DU) was clearly below the respective values found in March 1997 (267 DU) and 2011 (252 DU), which highlights the special evolution of the polar stratospheric ozone layer in the Northern Hemisphere in spring 2020. A comparison with a typical ozone hole over the Antarctic (e.g., in 2016) indicates that although the Arctic spring 2020 situation is remarkable, with total ozone column values around or below 220 DU observed over a considerable area (up to 0.9 million km2), the Antarctic ozone hole shows total ozone columns typically below 150 DU over a much larger area (of the order of 20 million km2). Furthermore, total ozone columns below 220 DU are typically observed over the Antarctic for about 4 months.


2020 ◽  
Author(s):  
Javer A. Barrera ◽  
Rafael P. Fernandez ◽  
Fernando Iglesias-Suarez ◽  
Carlos A. Cuevas ◽  
Jean-Francois Lamarque ◽  
...  

Abstract. Biogenic very short-lived bromine (VSLBr) represents, nowadays, ~ 25 % of the total stratospheric bromine loading. Owing to their much shorter lifetime compared to anthropogenic long-lived bromine (LLBr, e.g., halons) and chlorine (LLCl, e.g., chlorofluorocarbons) substances, the impact of VSLBr on ozone peaks at the extratropical lowermost stratosphere, a key climatic and radiative atmospheric region. Here we present a modelling study of the evolution of stratospheric ozone and its chemical losses in extra-polar regions during the 21st century, under two different scenarios: considering and neglecting the additional stratospheric injection of 5 ppt biogenic VSLBr naturally released from the ocean. Our analysis shows that the inclusion of VSLBr result in a realistic stratospheric bromine loading and improves the quantitative 1980–2015 model-satellite agreement of total ozone column (TOC) in the mid-latitudes. We show that the overall ozone response to VSLBr within the mid-latitudes follows the stratospheric abundances evolution of long-lived inorganic chlorine and bromine throughout the 21st century. Additional ozone losses due to VSLBr are maximised during the present-day period (1990–2010), with TOC differences of −8 DU (−3 %) and −5.5 DU (−2 %) for the southern (SH-ML) and northern (NH-ML) mid-latitudes, respectively. Moreover, the projected TOC differences at the end of the 21st century are at least half of the values found for the present-day period. In the tropics, a small (


2021 ◽  
Vol 14 (8) ◽  
pp. 5771-5789
Author(s):  
Andrea Orfanoz-Cheuquelaf ◽  
Alexei Rozanov ◽  
Mark Weber ◽  
Carlo Arosio ◽  
Annette Ladstätter-Weißenmayer ◽  
...  

Abstract. A scientific total ozone column product from Ozone Mapping and Profiler Suite Nadir Mapper (OMPS-NM) observations and the retrieval algorithm are presented. The retrieval employs the weighting function fitting approach (WFFA), a modification of the weighting function differential optical absorption spectroscopy (WFDOAS) technique. The total ozone columns retrieved with WFFA are in very good agreement with other datasets. A mean difference of 0.3 % with respect to ground-based Brewer and Dobson measurements is observed. Seasonal and latitudinal variations are well represented and in agreement with other satellite datasets. The comparison of our product with the operational product of OMPS-NM indicates a mean bias of around zero. The comparison with the Tropospheric Monitoring Instrument products (S5P/TROPOMI) OFFL and WFDOAS shows a persistent negative bias of about −0.6 % for OFFL and −2.5 % for WFDOAS. Larger differences are only observed in the polar regions. This data product is intended to be used for trend analysis and the retrieval of tropospheric ozone combined with the OMPS limb profiler data.


Anales AFA ◽  
2010 ◽  
pp. 266-271
Author(s):  
P. F. Orte ◽  
E. Wolfram ◽  
J. Salvador ◽  
R. D’Elia ◽  
C. Marinelli ◽  
...  

The ozone layer is regarded as an invisible filter that protects all life from the dangerous overexposure to ultraviolet rays. The thinning of the ozone layer over the South Pole stratosphere of our planet is a seasonal phenomenon that takes place every year during the spring since the 80s and is known as the “ozone hole”. It is developed on the Antarctic, reaching an area of 30 million square kilometers approximately. In the spring begins to deform reached lower latitudes, presenting specific cases of low total ozone column over Rio Gallegos (51 ° 36 'S, 69 º 19' W) due to the passage of the hole and its border over this city, which can derive in UV indices greater increasing the UV radiation impact on surface. This study evaluates the statistical dependence of the UV index with total ozone column and cloud optical thickness in the Patagonian city of Rio Gallegos for spring and summer. Another aim is to quantify the attenuation of UV radiation produced for the clouds to cases that the ozone hole is passing over the city. The cloud optical thickness and UV index data analyzed were obtained at Station CEILAP RG (CITEFA-CONICET) with a narrowband multichannel radiometer GUV-541 (Biospherical Inc.), and the total ozone column data were extracted from the Satellite OMI / AURA database of NASA. All these belong to the spring and summer seasons of the October 2005-December 2008 period. It is noted that 25% of ozone hole cases in springtime, which would result in a high UVI on Rio Gallegos, are strongly attenuated by the clouds.


2021 ◽  
Author(s):  
Le Cao ◽  
Linjie Fan ◽  
Simeng Li ◽  
Shuangyan Yang

Abstract. The occurrence of the tropospheric ozone depletion events (ODEs) in the Antarctic can be influenced by the change in Total Ozone Column (TOC). In this study, we combined the observational data obtained from ground observation stations with two numerical models (TUV and KINAL), to figure out the relationship between the TOC change and the occurrence of ODEs in the Antarctic. A sensitivity analysis was also performed on the change in ozone and major bromine species (BrO, HOBr and HBr) to find out key photolysis reactions determining the impact on the occurrence of tropospheric ODEs brought by the change in TOC. From the analysis of the observational data and the numerical results, we suggested that the occurrence frequency of ODEs in the Antarctic seems negatively correlated with the variation of TOC. Moreover, major ODE accelerating reactions (i.e. photolysis of ozone, H2O2 and HCHO) and decelerating reactions (i.e. photolysis of BrO and HOBr), which heavily control the start of ODEs, were also identified. It was found that when TOC varies, the major ODE accelerating reactions speed up significantly, while major ODE decelerating reactions are only slightly affected, thus leading to the negative dependence of the ODE occurrence on the change in TOC.


2020 ◽  
Author(s):  
Martin Dameris ◽  
Diego G. Loyola ◽  
Matthias Nützel ◽  
Melanie Coldewey-Egbers ◽  
Christophe Lerot ◽  
...  

Abstract. Ozone data derived from the TROPOMI sensor onboard the Sentinel-5 Precursor satellite are showing an atypical ozone hole feature in the polar region of the Northern hemisphere (Arctic) in spring 2020. A persistent ozone hole pattern with minimum total ozone column values around or below 220 Dobson units (DU) was seen for the first time over the Arctic for about 5 weeks in March and early April 2020. Usually an ozone hole with such low total ozone column values has only been observed in the polar Southern hemisphere (Antarctic) in spring over the last 4 decades, but not over the Arctic. The ozone hole pattern was caused by a particularly stable polar vortex in the stratosphere, enabling a persistent cold stratosphere at higher latitudes, a prerequisite for ozone depletion through heterogeneous chemistry. Based on the ERA5 reanalysis from ECMWF, the Northern winter 2019/2020 (from December to March) showed minimum polar cap temperatures consistently below 195 K around 20 km altitude, which enabled enhanced formation of polar stratospheric clouds. The special situation in spring 2020 is compared and discussed in context with two other ozone hole-like features in spring 1997 and 2011 that were showing comparable dynamical conditions in the stratosphere in combination with low total ozone column values. However, during these years total ozone columns below 220 DU over larger areas and over several consecutive days have not been observed. The similarities and differences of the atmospheric conditions of these three events and possible explanations are presented and discussed. It becomes apparent that the monthly mean of the minimum total ozone column value for March 2020 (i.e. 221 DU) was clearly below the respective values found in March 1997 (i.e. 267 DU) and 2011 (i.e. 252 DU), which emphasizes the noteworthiness of the evolution of the polar stratospheric ozone layer in Northern hemisphere spring 2020. These results provide a first description and classification of the development of the Arctic ozone hole in boreal spring 2020 and highlight its peculiarity.


2021 ◽  
Author(s):  
Alexander Kokhanovsky ◽  
Filippo Iodice ◽  
Luca Lelli ◽  
Christian Retscher

<p>The total ozone column (TOC) is retrieved using multiple optical satellite instrumentation (including TOMS, OMI, TROPOMI, GOME, GOME-2, and SCIAMACHY, to name a few). The spatial resolution of total ozone satellite measurements is quite low (e.g., 7x3.5km for TROPOMI, 13x24km for OMI, and 30x60km for SCIAMACHY). In some cases (say, close to the ozone hole boundary) it is of importance to have information on the total ozone at a higher spatial resolution. In this work we propose the use of multiple optical instruments performing the measurements in the ozone Chappuis ozone bands (400-650nm) for the total ozone column determination. This makes it possible to extend the number of instruments, which can be used for the total ozone determination (say, also using current/historic measurements by MODIS/Aqua&Terra, S-GLI/SCOM-C, VIIRS/Suomi-NPP, MSI/S-2, OLCI/S-3, MERIS/ENVISAT). In particular, MERIS and SCIAMACHY have been operated from the same satellite platform and had similar swaths (960km for SCIAMACHY and 1150km for MERIS). This means the method of total ozone retrieval based on combination of SCIAMACHY (30x60km) and MERIS (0.3x0.3km) observations over highly reflective ground (say, in Antarctica, where the ozone hole is located) is of value. The total ozone retrievals using Chappuis ozone bands is based on the fact that the top-of-atmosphere reflectance observed over a highly reflective ground (say, snow) has a minimum in the visible located around 600nm. This feature is due to due to the absorption of light by the atmospheric ozone (Gorshelev et al., 2014). The contribution of both ground and atmospheric light scattering to the top-of-atmosphere (TOA) does not have extrema in the vicinity of 600nm. Therefore, there is a possibility to remove both atmospheric and ground light scattering effects to the TOA reflectance over highly reflective underlying surface and derive the atmospheric transmittance due to the ozone absorption effects, which can be used for the TOC determination. Such a method has been explored using MERIS/ENVISAT (Jolivet et al., 2016) and OLCI/S-3 (Kokhanovsky et al., 2020) in the past. This paper is aimed at further improvement of the technique as applied to OLCI/S-3A,B. We have performed intercomparisons of OLCI TOC retrievals with TOC derived from ground and other satellite (e.g., OMI, TROPOMI, GOME-2) measurements. The TOC retrievals using OLCI have been performed over entire Antarctica allowing the generation of TOC at various spatial resolutions including standard 1x1 degree resolution.</p><p>Gorshelev, V., et al., 2014: High spectral resolution ozone absorption cross-sections – Part 1: Measurements, data analysis and comparison with previous measurements around 293 K, Atmos. Meas. Tech., 7, 609–624, https://doi.org/10.5194/amt-7-609-2014.</p><p>Jolivet D., et al., 2016: TORMS : total ozone retrieval from MERIS in view of application to Sentinel-3,  Living Planet Symposium, Proceedings of the conference held 9-13 May 2016 in Prague, Czech Republic. Edited by L. Ouwehand. ESA-SP Volume 740, ISBN: 978-92-9221-305-3, p.358</p><p>Kokhanovsky, A. A., et al., 2020: Retrieval of total ozone over Antarctica using Sentinel -3 Ocean and Land Colour Instrument, JQSRT, 2020, 251, https://doi.org/10.1016/j.jqsrt.2020.107045.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document