scholarly journals Regional temperature change potentials for short lived climate forcers from multiple models

2017 ◽  
Author(s):  
Borgar Aamaas ◽  
Terje K. Berntsen ◽  
Jan S. Fuglestvedt ◽  
Keith P. Shine ◽  
William J. Collins

Abstract. We calculate the absolute regional temperature change potential (ARTP) of various short lived climate forcers (SLCFs) based on detailed radiative forcing (RF) calculations from four different models. The temperature response has been estimated for four latitude bands (90–28° S, 28° S–28° N, 28–60° N, and 60–90° N). The regional pattern in climate response not only depends on the relationship between RF and surface temperature, but also on where and when emissions occurred and atmospheric transport, chemistry, interaction with clouds, and deposition. We present four emissions cases covering Europe, East Asia, the global shipping sector, and the globe. Our study is the first to estimate ARTP values for emissions during Northern Hemisphere summer (May–October) and winter season (November–April). The species studied are aerosols and aerosol precursors (black carbon (BC), organic carbon (OC), SO2, NH3), ozone precursors (NOx, CO, volatile organic compound (VOC)), and methane (CH4). For the response to BC in the Arctic, we take into account the vertical structure of the RF in the atmosphere, and an enhanced climate efficacy for BC deposition on snow. Of all SLCFs, BC is the most sensitive to where and when the emissions occur, as well as giving the largest difference in response between the latitude bands. The temperature response in the Arctic is almost 4 times larger and more than 2 times larger than the global average for Northern Hemisphere winter emissions for Europe and East Asia, respectively. The latitudinal breakdown gives likely a better estimate of the global temperature response as it accounts for varying efficacies with latitude. An annual pulse of non-methane SLCFs emissions globally (representative of 2008) leads to a global cooling. Whereas, winter emissions in Europe and East Asia give a net warming in the Arctic due to significant warming from BC deposition on snow.

2017 ◽  
Vol 17 (17) ◽  
pp. 10795-10809 ◽  
Author(s):  
Borgar Aamaas ◽  
Terje K. Berntsen ◽  
Jan S. Fuglestvedt ◽  
Keith P. Shine ◽  
William J. Collins

Abstract. We calculate the absolute regional temperature change potential (ARTP) of various short-lived climate forcers (SLCFs) based on detailed radiative forcing (RF) calculations from four different models. The temperature response has been estimated for four latitude bands (90–28° S, 28° S–28° N, 28–60° N, and 60–90° N). The regional pattern in climate response not only depends on the relationship between RF and surface temperature, but also on where and when emissions occurred and atmospheric transport, chemistry, interaction with clouds, and deposition. We present four emissions cases covering Europe, East Asia, the global shipping sector, and the entire globe. Our study is the first to estimate ARTP values for emissions during Northern Hemisphere summer (May–October) and winter season (November–April). The species studied are aerosols and aerosol precursors (black carbon, organic carbon, SO2, NH3), ozone precursors (NOx, CO, volatile organic compound), and methane (CH4). For the response to BC in the Arctic, we take into account the vertical structure of the RF in the atmosphere, and an enhanced climate efficacy for BC deposition on snow. Of all SLCFs, BC is the most sensitive to where and when the emissions occur, as well as giving the largest difference in response between the latitude bands. The temperature response in the Arctic per unit BC emission is almost four times larger and more than two times larger than the global average for Northern Hemisphere winter emissions for Europe and East Asia, respectively. The latitudinal breakdown likely gives a better estimate of the global temperature response as it accounts for varying efficacies with latitude. An annual pulse of non-methane SLCF emissions globally (representative of 2008) lead to a global cooling. In contrast, winter emissions in Europe and East Asia give a net warming in the Arctic due to significant warming from BC deposition on snow.


2018 ◽  
Author(s):  
Anna Lewinschal ◽  
Annica M. L. Ekman ◽  
Hans-Christen Hansson ◽  
Maria Sand ◽  
Terje K. Berntsen ◽  
...  

Abstract. Short-lived anthropogenic climate forcers, such as sulphate aerosols, affect both climate and air quality. Despite being short-lived, these forcers do not affect temperatures only locally; regions far away from the emission sources are also affected. Climate metrics are often used e.g. in a policy context to compare the climate impact of different anthropogenic forcing agents. These metrics typically relate a forcing change in a certain region with a temperature change in another region and thus often require a separate model to convert emission changes to radiative forcing changes. In this study, we used a coupled Earth System Model (NorESM) to calculate emission-to-temperature-response metrics for sulphur dioxide (SO2) emission changes in four different policy-relevant regions: Europe, North America, East Asia and South Asia. We first increased the SO2 emissions in each individual region by an amount giving approximately the same global average radiative forcing change (−0.45 W m−2). The global mean temperature change per unit sulphur emission compared to the control experiment was independent of emission region and equal to ∼ 0.006 K/TgSyr−1. On a regional scale, the Arctic showed the largest temperature response in all experiments. The second largest temperature change occurred in the region of the imposed emission increase, except when South Asian emissions were changed; in this experiment, the temperature response was approximately the same in South Asia and East Asia. We also examined the non-linearity of the temperature response by removing all anthropogenic SO2 emissions over Europe in one experiment. In this case, the temperature response (both global and regional) was twice of that in the corresponding experiment with a European emission increase. This nonlinearity in the temperature response is one of many uncertainties associated with the use of simplified climate metrics.


2019 ◽  
Vol 19 (4) ◽  
pp. 2385-2403 ◽  
Author(s):  
Anna Lewinschal ◽  
Annica M. L. Ekman ◽  
Hans-Christen Hansson ◽  
Maria Sand ◽  
Terje K. Berntsen ◽  
...  

Abstract. Short-lived anthropogenic climate forcers (SLCFs), such as sulfate aerosols, affect both climate and air quality. Despite being short-lived, these forcers do not affect temperatures only locally; regions far away from the emission sources are also affected. Climate metrics are often used in a policy context to compare the climate impact of different anthropogenic forcing agents. These metrics typically relate a forcing change in a certain region with a temperature change in another region and thus often require a separate model to convert emission changes to radiative forcing (RF) changes. In this study, we used a coupled Earth system model, NorESM (Norwegian Earth System Model), to calculate emission-to-temperature-response metrics for sulfur dioxide (SO2) emission changes in four different policy-relevant regions: Europe (EU), North America (NA), East Asia (EA) and South Asia (SA). We first increased the SO2 emissions in each individual region by an amount giving approximately the same global average radiative forcing change (−0.45 Wm−2). The global mean temperature change per unit sulfur emission compared to the control experiment was independent of emission region and equal to ∼0.006 K(TgSyr−1)−1. On a regional scale, the Arctic showed the largest temperature response in all experiments. The second largest temperature change occurred in the region of the imposed emission increase, except when South Asian emissions were changed; in this experiment, the temperature response was approximately the same in South Asia and East Asia. We also examined the non-linearity of the temperature response by removing all anthropogenic SO2 emissions over Europe in one experiment. In this case, the temperature response (both global and regional) was twice that in the corresponding experiment with a European emission increase. This non-linearity in the temperature response is one of many uncertainties associated with the use of simplified climate metrics.


2021 ◽  
Vol 9 ◽  
Author(s):  
Acharya Asutosh ◽  
Suvarna Fadnavis ◽  
M. Nuncio ◽  
Rolf Müller ◽  
Sarat C. Tripathy

The mechanisms behind Arctic warming and associated climate changes are difficult to discern. Also, the complex local processes and feedbacks like aerosol-cloud-climate interactions are yet to be quantified. Here, using the Community Earth System Model (CAM5) experiments, with emission enhancement of anthropogenic sulfate 1) five-fold globally, 2) ten-times over Asia, and 3) ten-times over Europe we show that regional emissions of sulfate aerosols alter seasonal warming over the Arctic, i.e., colder summer and warmer winter. European emissions play a dominant role in cooling during the summer season (0.7 K), while Asian emissions dominate the warming during the winter season (maximum ∼0.6 K) in the Arctic surface. The cooling/warming is associated with a negative/positive cloud radiative forcing. During the summer season increase in low–mid level clouds, induced by sulfate emissions, favours the solar dimming effect that reduces the downwelling radiation to the surface and thus leads to surface cooling. Warmer winters are associated with enhanced high-level clouds that induce a positive radiative forcing at the top of the atmosphere. This study points to the importance of international strategies being implemented to control sulfate emissions to combat air pollution. Such strategies will also affect the Arctic cooling/warming associated with a cloud radiative forcing caused by sulfate emission change.


2017 ◽  
Vol 8 (3) ◽  
pp. 547-563 ◽  
Author(s):  
Marianne T. Lund ◽  
Borgar Aamaas ◽  
Terje Berntsen ◽  
Lisa Bock ◽  
Ulrike Burkhardt ◽  
...  

Abstract. This study examines the impacts of emissions from aviation in six source regions on global and regional temperatures. We consider the NOx-induced impacts on ozone and methane, aerosols and contrail-cirrus formation and calculate the global and regional emission metrics global warming potential (GWP), global temperature change potential (GTP) and absolute regional temperature change potential (ARTP). The GWPs and GTPs vary by a factor of 2–4 between source regions. We find the highest aviation aerosol metric values for South Asian emissions, while contrail-cirrus metrics are higher for Europe and North America, where contrail formation is prevalent, and South America plus Africa, where the optical depth is large once contrails form. The ARTP illustrate important differences in the latitudinal patterns of radiative forcing (RF) and temperature response: the temperature response in a given latitude band can be considerably stronger than suggested by the RF in that band, also emphasizing the importance of large-scale circulation impacts. To place our metrics in context, we quantify temperature change in four broad latitude bands following 1 year of emissions from present-day aviation, including CO2. Aviation over North America and Europe causes the largest net warming impact in all latitude bands, reflecting the higher air traffic activity in these regions. Contrail cirrus gives the largest warming contribution in the short term, but remain important at about 15 % of the CO2 impact in several regions even after 100 years. Our results also illustrate both the short- and long-term impacts of CO2: while CO2 becomes dominant on longer timescales, it also gives a notable warming contribution already 20 years after the emission. Our emission metrics can be further used to estimate regional temperature change under alternative aviation emission scenarios. A first evaluation of the ARTP in the context of aviation suggests that further work to account for vertical sensitivities in the relationship between RF and temperature response would be valuable for further use of the concept.


2017 ◽  
Author(s):  
Marianne T. Lund ◽  
Borgar Aamaas ◽  
Terje Berntsen ◽  
Lisa Bock ◽  
Ulrike Burkhardt ◽  
...  

Abstract. This study examines the impacts of emissions from aviation in six source regions on global and regional temperature. We consider the NOx-induced impacts on ozone and methane, aerosols and contrail-cirrus formation, and calculate the global and regional climate metrics Global Warming Potential (GWP), Global Temperature change Potential (GTP) and Absolute Regional Temperature change Potential (ARTP). GWPs and GTPs vary by a factor 2–4 between source regions. We find the highest aviation aerosol metric values for South Asian emissions, while contrail-cirrus metrics are higher for Europe and North America, where contrail formation is prevalent, and South America plus Africa, where the optical depth is large once contrails form. The ARTP illustrate important differences in the latitudinal patterns of radiative forcing (RF) and temperature response: The temperature response in a given latitude band can be considerably stronger than suggested by the RF in that band, also emphasizing the importance of large-scale circulation impacts. To place our metrics in context, we quantify the temperature response in the four broad latitude bands following a one-year pulse emission from present-day aviation, including CO2. Aviation over North America and Europe cause the largest net warming impact in all latitude bands, reflecting the higher air traffic activity here. For all regions, the largest single warming contribution is from contrail-cirrus 20 years after the emissions, while CO2 becomes dominant at 100 years, although contrail-cirrus remain important in several regions also on this time scale. Our emission metrics can be further used to estimate regional temperature impact under alternative aviation emission scenarios. A first evaluation of the ARTP in the context of aviation suggests that further work to account for vertical sensitivities in the relationship between RF and temperature response would be valuable for further use of the concept.


2012 ◽  
Vol 12 (17) ◽  
pp. 7955-7960 ◽  
Author(s):  
D. T. Shindell

Abstract. The Absolute Regional Temperature Potential (ARTP) is one of the few climate metrics that provides estimates of impacts at a sub-global scale. The ARTP presented here gives the time-dependent temperature response in four latitude bands (90–28° S, 28° S–28° N, 28–60° N and 60–90° N) as a function of emissions based on the forcing in those bands caused by the emissions. It is based on a large set of simulations performed with a single atmosphere-ocean climate model to derive regional forcing/response relationships. Here I evaluate the robustness of those relationships using the forcing/response portion of the ARTP to estimate regional temperature responses to the historic aerosol forcing in three independent climate models. These ARTP results are in good accord with the actual responses in those models. Nearly all ARTP estimates fall within ±20% of the actual responses, though there are some exceptions for 90–28° S and the Arctic, and in the latter the ARTP may vary with forcing agent. However, for the tropics and the Northern Hemisphere mid-latitudes in particular, the ±20% range appears to be roughly consistent with the 95% confidence interval. Land areas within these two bands respond 39–45% and 9–39% more than the latitude band as a whole. The ARTP, presented here in a slightly revised form, thus appears to provide a relatively robust estimate for the responses of large-scale latitude bands and land areas within those bands to inhomogeneous radiative forcing and thus potentially to emissions as well. Hence this metric could allow rapid evaluation of the effects of emissions policies at a finer scale than global metrics without requiring use of a full climate model.


2012 ◽  
Vol 12 (9) ◽  
pp. 23261-23290 ◽  
Author(s):  
W. J. Collins ◽  
M. M. Fry ◽  
H. Yu ◽  
J. S. Fuglestvedt ◽  
D. T. Shindell ◽  
...  

Abstract. We examine the climate effects of the emissions of near-term climate forcers (NTCFs) from 4 continental regions (East Asia, Europe, North America and South Asia) using radiative forcing from the task force on hemispheric transport of air pollution source-receptor global chemical transport model simulations. These simulations model the transport of 3 aerosol species (sulphate, particulate organic matter and black carbon) and 4 ozone precursors (methane, nitric oxides (NOx), volatile organic compounds and carbon monoxide). From the equilibrium radiative forcing results we calculate global climate metrics, global warming potentials (GWPs) and global temperature change potentials (GTPs) and show how these depend on emission region, and can vary as functions of time. For the aerosol species, the GWP(100) values are −37±12, −46±20, and 350±200 for SO2, POM and BC respectively for the direct effects only. The corresponding GTP(100) values are −5.2±2.4, −6.5±3.5, and 50±33. This analysis is further extended by examining the temperature-change impacts in 4 latitude bands. This shows that the latitudinal pattern of the temperature response to emissions of the NTCFs does not directly follow the pattern of the diagnosed radiative forcing. For instance temperatures in the Arctic latitudes are particularly sensitive to NTCF emissions in the northern mid-latitudes. At the 100-yr time horizon the ARTPs show NOx emissions can have a warming effect in the northern mid and high latitudes, but cooling in the tropics and Southern Hemisphere. The northern mid-latitude temperature response to northern mid-latitude emissions of most NTCFs is approximately twice as large as would be implied by the global average.


2013 ◽  
Vol 13 (5) ◽  
pp. 2471-2485 ◽  
Author(s):  
W. J. Collins ◽  
M. M. Fry ◽  
H. Yu ◽  
J. S. Fuglestvedt ◽  
D. T. Shindell ◽  
...  

Abstract. We examine the climate effects of the emissions of near-term climate forcers (NTCFs) from 4 continental regions (East Asia, Europe, North America and South Asia) using results from the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model simulations. We address 3 aerosol species (sulphate, particulate organic matter and black carbon) and 4 ozone precursors (methane, reactive nitrogen oxides (NOx), volatile organic compounds and carbon monoxide). We calculate the global climate metrics: global warming potentials (GWPs) and global temperature change potentials (GTPs). For the aerosols these metrics are simply time-dependent scalings of the equilibrium radiative forcings. The GTPs decrease more rapidly with time than the GWPs. The aerosol forcings and hence climate metrics have only a modest dependence on emission region. The metrics for ozone precursors include the effects on the methane lifetime. The impacts via methane are particularly important for the 20 yr GTPs. Emissions of NOx and VOCs from South Asia have GWPs and GTPs of higher magnitude than from the other Northern Hemisphere regions. The analysis is further extended by examining the temperature-change impacts in 4 latitude bands, and calculating absolute regional temperature-change potentials (ARTPs). The latitudinal pattern of the temperature response does not directly follow the pattern of the diagnosed radiative forcing. We find that temperatures in the Arctic latitudes appear to be particularly sensitive to BC emissions from South Asia. The northern mid-latitude temperature response to northern mid-latitude emissions is approximately twice as large as the global average response for aerosol emission, and about 20–30% larger than the global average for methane, VOC and CO emissions.


Sign in / Sign up

Export Citation Format

Share Document