scholarly journals The boundary condition for the vertical velocity and its interdependence with surface gas exchange

2017 ◽  
Author(s):  
Andrew S. Kowalski

Abstract. The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w) in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E) and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E⁄ρ. This is true even right down at the surface where the boundary condition is w0 = E⁄ρ0. This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, e.g.) but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux-gradient relationships (eddy diffusivities) requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube – with vapour transport into an overlying, horizontal air stream – was described long ago in classical mechanics, and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterizations of ecosystem and plant functioning.

2017 ◽  
Vol 17 (13) ◽  
pp. 8177-8187 ◽  
Author(s):  
Andrew S. Kowalski

Abstract. The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w) in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E) and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface). This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example) but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux–gradient relationships (eddy diffusivities) requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube – with vapour transport into an overlying, horizontal airstream – was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.


1983 ◽  
Vol 100 ◽  
pp. 145-146
Author(s):  
A. H. Nelson ◽  
T. Matsuda ◽  
T. Johns

Numerical calculations of spiral shocks in the gas discs of galaxies (1,2,3) usually assume that the disc is flat, i.e. the gas motion is purely horizontal. However there is abundant evidence that the discs of galaxies are warped and corrugated (4,5,6) and it is therefore of interest to consider the effect of the consequent vertical motion on the structure of spiral shocks. If one uses the tightly wound spiral approximation to calculate the gas flow in a vertical cut around a circular orbit (i.e the ⊝ -z plane, see Nelson & Matsuda (7) for details), then for a gas disc with Gaussian density profile in the z-direction and initially zero vertical velocity a doubly periodic spiral potential modulation produces the steady shock structure shown in Fig. 1. The shock structure is independent of z, and only a very small vertical motion appears with anti-symmetry about the mid-plane.


1992 ◽  
Vol 294 ◽  
Author(s):  
Ivars Neretnieks

ABSTRACTIn repositories for nuclear waste there are many processes that will be instrumental in damaging the canisters and releasing the nuclides. Based on experiences from studies of the performance of repositories and of an actual design, the major mechanisms influencing the integrity and performance of a repository are described and discussed. The paper addresses only conditions in crystalline rock repositories. The low water flow rate in fractures and channels plays a dominant role in limiting the interaction between water and waste. Molecular diffusion in the backfill and rock matrix, as well as in the mobile water, is an important transport process, but actually limits the exchange rate because diffusive transport is slow. Solubility limits of both waste matrix and of individual nuclides are also important. Complicating processes include alpha-radiolysis, which may change the water chemistry in the near-field. The sizes and locations of water flowpaths and damages in the canisters considerably influence the release rates. Uncertainties in data are large. Nevertheless the system is very robust in the sense that practically no reasonably conceivable assumptions or data will lead to large nuclide releases. Several natural analogues have been found to exhibit similarities with a waste repository and help to validate concepts and to increase our confidence that all major issues have been considered.


2013 ◽  
Vol 13 (11) ◽  
pp. 31079-31125 ◽  
Author(s):  
J. Sedlar ◽  
M. D. Shupe

Abstract. Over the Arctic Ocean, little is known, observationally, on cloud-generated buoyant overturning vertical motions within mixed-phase stratocumulus clouds. Characteristics of such motions are important for understanding the diabatic processes associated with the vertical motions, the lifetime of the cloud layer and its micro- and macrophysical characteristics. In this study, we exploit a suite of surface-based remote sensors over the high Arctic sea ice during a week-long period of persistent stratocumulus in August 2008 to derive the in-cloud vertical motion characteristics. In-cloud vertical velocity skewness and variance profiles are found to be strikingly different from observations within lower-latiatude stratocumulus, suggesting these Arctic mixed-phase clouds interact differently with the atmospheric thermodynamics (cloud tops extending above a stable temperature inversion base) and with a different coupling state between surface and cloud. We find evidence of cloud-generated vertical mixing below cloud base, regardless of surface-cloud coupling state, although a decoupled surface-cloud state occurred most frequently. Detailed case studies are examined focusing on 3 levels within the cloud layer, where wavelet and power spectral analyses are applied to characterize the dominant temporal and horizontal scales associated with cloud-generated vertical motions. In general, we find a positively-correlated vertical motion signal across the full cloud layer depth. The coherency is dependent upon other non-cloud controlled factors, such as larger, mesoscale weather passages and radiative shielding of low-level stratocumulus by multiple cloud layers above. Despite the coherency in vertical velocity across the cloud, the velocity variances were always weaker near cloud top, relative to cloud mid and base. Taken in combination with the skewness, variance and thermodynamic profile characteristics, we observe vertical motions near cloud-top that behave differently than those from lower within the cloud layer. Spectral analysis indicates peak cloud-generated w variance timescales slowed only modestly during decoupled cases relative to coupled; horizontal wavelengths only slightly increased when transitioning from coupling to decoupling. The similarities in scales suggests that perhaps the dominant forcing for all cases is generated from the cloud layer, and it is not the surface forcing that characterizes the time and space scales of in-cloud vertical velocity variance. This points toward the resilient nature of Arctic mixed-phase clouds to persist when characterized by thermodynamic regimes unique to the Arctic.


2008 ◽  
Vol 55 ◽  
pp. 183-202 ◽  
Author(s):  
John W. Nielsen-Gammon ◽  
David A. Gold

Abstract Advances in computer power, new forecasting challenges, and new diagnostic techniques have brought about changes in the way atmospheric development and vertical motion are diagnosed in an operational setting. Many of these changes, such as improved model skill, model resolution, and ensemble forecasting, have arguably been detrimental to the ability of forecasters to understand and respond to the evolving atmosphere. The use of nondivergent wind in place of geostrophic wind would be a step in the right direction, but the advantages of potential vorticity suggest that its widespread adoption as a diagnostic tool on the west side of the Atlantic is overdue. Ertel potential vorticity (PV), when scaled to be compatible with pseudopotential vorticity, is generally similar to pseudopotential vorticity, so forecasters accustomed to quasigeostrophic reasoning through the height tendency equation can transfer some of their intuition into the Ertel-PV framework. Indeed, many of the differences between pseudopotential vorticity and Ertel potential vorticity are consequences of the choice of definition of quasigeostrophic PV and are not fundamental to the quasigeostrophic system. Thus, at its core, PV thinking is consistent with commonly used quasigeostrophic diagnostic techniques.


Author(s):  
Rok Krpan ◽  
Iztok Tiselj ◽  
Ivo Kljenak

Abstract An experiment performed in SPARC experimental facility, was simulated with the computational fluid dynamics code OpenFOAM. The experiment took place in two phases. In the first phase, a helium-air layer was generated, which was then eroded with a vertical air jet injected in the vessel axis during the second experimental phase. A three-dimensional and a quasi-two-dimensional numerical models of a cylindrical vessel were developed and mesh convergence studies were performed. The mixing process was simulated as a single-phase flow with common momentum equation. Included gas species mass fractions are considered as passive scalars and are calculated using the transport equation. However, term describing the molecular diffusion cannot be neglected in our case and had to be added to diffusion equation implemented in default OpenFOAM solver. The k-ε turbulence model with additional buoyancy term implemented in OpenFOAM was used for turbulence modelling. Despite improvement of the physical model and following the Best Practice Guidelines, the results obtained with OpenFOAM CFD code still, at some locations, differ substantially from the experimental results. A modified definition of low Reynolds number eddy viscosity correction function is proposed, which significantly improves the agreement between measurements and calculation results.


2019 ◽  
Vol 34 (06n07) ◽  
pp. 1950033
Author(s):  
Daniel Katz

We introduce a new semirelativistic quantum operator for the length of the worldline a particle traces out as it moves. In this article the operator is constructed in a heuristic way and some of its elementary properties are explored. The operator ends up depending in a very complicated way on the potential of the system it is to act on so as a proof of concept we use it to analyze the expected distance traveled by a free Gaussian wave packet with some initial momentum. It is shown in this case that the distance such a particle travels becomes light-like as its mass vanishes and agrees with the classical result for macroscopic masses. This preliminary result has minor implications for the Weak Equivalence Principle (WEP) in quantum mechanics. In particular it shows that the logical relationship between two formulations of the WEP in classical mechanics extends to quantum mechanics. That our result is qualitatively consistent with the work of others emboldens us to start the task of evaluating the new operator in nonzero potentials. However, we readily acknowledge that the looseness in the definition of our operator means that all of our so-called results are highly speculative. Plans for future work with the new operator are discussed in the last section.


1996 ◽  
Vol 11 (03) ◽  
pp. 553-561 ◽  
Author(s):  
WON T. KIM ◽  
JULIAN LEE

We show how a stress-energy pseudotensor can be constructed in two-dimensional dilaton gravity theories (classical, CGHS and RST) and derive from it the expression for the ADM mass in these theories. We compare this expression with the ones in the literature obtained by other methods. We define the Bondi mass for these theories by using the pseudotensor formalism. The resulting expression is the generalization of the expression for the ADM mass. The boundary condition needed for the energy conservation is also investigated. It is shown that under appropriate boundary conditions, our definition of the Bondi mass is exactly the ADM mass minus the matter radiation energy at null infinity.


2014 ◽  
Vol 14 (7) ◽  
pp. 3461-3478 ◽  
Author(s):  
J. Sedlar ◽  
M. D. Shupe

Abstract. Over the Arctic Ocean, little is known on cloud-generated buoyant overturning vertical motions within mixed-phase stratocumulus clouds. Characteristics of such motions are important for understanding the diabatic processes associated with the vertical motions, the lifetime of the cloud layer and its micro- and macrophysical characteristics. In this study, we exploit a suite of surface-based remote sensors over the high-Arctic sea ice during a weeklong period of persistent stratocumulus in August 2008 to derive the in-cloud vertical motion characteristics. In-cloud vertical velocity skewness and variance profiles are found to be strikingly different from observations within lower-latitude stratocumulus, suggesting these Arctic mixed-phase clouds interact differently with the atmospheric thermodynamics (cloud tops extending above a stable temperature inversion base) and with a different coupling state between surface and cloud. We find evidence of cloud-generated vertical mixing below cloud base, regardless of surface–cloud coupling state, although a decoupled surface–cloud state occurred most frequently. Detailed case studies are examined, focusing on three levels within the cloud layer, where wavelet and power spectral analyses are applied to characterize the dominant temporal and horizontal scales associated with cloud-generated vertical motions. In general, we find a positively correlated vertical motion signal amongst vertical levels within the cloud and across the full cloud layer depth. The coherency is dependent upon other non-cloud controlled factors, such as larger, mesoscale weather passages and radiative shielding of low-level stratocumulus by one or more cloud layers above. Despite the coherency in vertical velocity across the cloud, the velocity variances were always weaker near cloud top, relative to cloud middle and base. Taken in combination with the skewness, variance and thermodynamic profile characteristics, we observe vertical motions near cloud top that behave differently than those from lower within the cloud layer. Spectral analysis indicates peak cloud-generated w variance timescales slowed only modestly during decoupled cases relative to coupled; horizontal wavelengths only slightly increased when transitioning from coupling to decoupling. The similarities in scales suggests that perhaps the dominant forcing for all cases is generated from the cloud layer, and it is not the surface forcing that characterizes the time- and space scales of in-cloud vertical velocity variance. This points toward the resilient nature of Arctic mixed-phase clouds to persist when characterized by thermodynamic regimes unique to the Arctic.


Sign in / Sign up

Export Citation Format

Share Document