scholarly journals Two-way feedback mechanism between unfavorable meteorological conditions and cumulative aerosol pollution exists in various haze regions of China

2018 ◽  
Author(s):  
Junting Zhong ◽  
Xiaoye Zhang ◽  
Yaqiang Wang ◽  
Jizhi Wang ◽  
Xiaojing Shen ◽  
...  

Abstract. Accompanied by unfavorable meteorological conditions with stable stratification in various haze regions of China, persistent heavy aerosol pollution episodes lasting more than 3 consecutive days (HPEs) frequently occur, particularly in winter. In the North China Plain (NCP), explosive growth in PM2.5, which occurs in some HPES, is dominated by a two-way feedback mechanism between further worsened unfavorable meteorological conditions and cumulative aerosol pollution. However, whether such a two-way feedback mechanism exists in other key haze regions is uncertain; these regions include the Guanzhong Plain (GZP), the Yangtze River Delta (YRD) region, the Two Lakes Basin (TLB), the Pearl River Delta (PRD) region, the Sichuan Basin (SB), and the Northeast China Plain (NeCP). In this study, using surface PM2.5 and radiation observations, radiosonde observations, and reanalysis data, we observed the existence of a two-way feedback mechanism in the above six regions. In the SB, this two-way feedback mechanism is weak due to the suppression of cloudy mid-upper layers. In the more polluted NCP, the FWRP, and the NeCP, the feedback is more striking than that in the YRD, the TLB, and the PRD. In these regions, the feedback of worsened meteorological conditions on PM2.5 explains 60–70 % of the increase in PM2.5 during the cumulative stages (CSs). For each region, the low-level cooling bias becomes increasingly substantial with aggravating aerosol pollution and a closer distance to the ground surface. With PM2.5 mass concentrations greater than 400 μg m−3, the near-ground bias exceeded −4 ºC in Beijing and reached up to approximately −4 ºC in Xi’an; this result was caused by accumulated aerosol mass to some extent. In addition to the increase in PM2.5 caused by the two-way feedback, these regions also suffer from the regional transport of pollutants, including inter-regional transport in the FWRP, trans-regional transport from the NCP to the YRD and the TLB, and southwesterly transport in the NeCP.

2019 ◽  
Vol 19 (5) ◽  
pp. 3287-3306 ◽  
Author(s):  
Junting Zhong ◽  
Xiaoye Zhang ◽  
Yaqiang Wang ◽  
Jizhi Wang ◽  
Xiaojing Shen ◽  
...  

Abstract. Accompanied by unfavorable meteorological conditions with stable stratification in various haze regions of China, persistent heavy aerosol pollution episodes (HPEs) lasting more than 3 consecutive days frequently occur, particularly in winter. In the North China Plain (NCP), explosive growth of fine particulate matter smaller than 2.5 µm in diameter (PM2.5), which occurs during some HPES, is dominated by a two-way feedback mechanism between more unfavorable meteorological conditions and cumulative aerosol pollution. However, the existence of a two-way feedback mechanism such as this in other key haze regions in China is uncertain; these regions include the Guanzhong Plain (GZP), the Yangtze River Delta (YRD) region, the Two Lakes Basin (TLB; a large outflow basin connected to Hubei Province and Hunan Province), the Pearl River Delta (PRD) region, the Sichuan Basin (SB), and the Northeast China Plain (NeCP). In this study, using surface PM2.5 and radiation observations, radiosonde observations, and reanalysis data, we observed the existence of a two-way feedback mechanism in the six abovementioned regions. In the SB, this two-way feedback mechanism is weak due to the suppression of cloudy mid-upper layers. In the more polluted NCP, the GZP, and the NeCP, the feedback is more striking than that in the YRD, the TLB, and the PRD. In these regions, the feedback of worsened meteorological conditions on PM2.5 explains 60 %–70 % of the increase in PM2.5 during the cumulative stages (CSs). For each region, the low-level cooling bias becomes increasingly substantial with increasing aerosol pollution and a closer distance to the ground surface. With PM2.5 mass concentrations greater than 400 µg m−3, the near-ground bias exceeded −4 ∘C in Beijing and reached up to approximately −4 ∘C in Xi'an; this result was caused by accumulated aerosol mass to some extent. In addition to the increase in PM2.5 caused by the two-way feedback, these regions also suffer from the regional transport of pollutants, including inter-regional transport in the GZP, trans-regional transport from the NCP to the YRD and the TLB, and southwesterly transport in the NeCP.


2021 ◽  
Vol 293 ◽  
pp. 112827
Author(s):  
Ishaq Dimeji Sulaymon ◽  
Yuanxun Zhang ◽  
Jianlin Hu ◽  
Philip K. Hopke ◽  
Yang Zhang ◽  
...  

2017 ◽  
Vol 17 (5) ◽  
pp. 3385-3399 ◽  
Author(s):  
Jiaping Xu ◽  
Xuhui Lee ◽  
Wei Xiao ◽  
Chang Cao ◽  
Shoudong Liu ◽  
...  

Abstract. Observations of atmospheric CO2 mole fraction and the 13C ∕ 12C ratio (expressed as δ13C) in urban airsheds provide constraints on the roles of anthropogenic and natural sources and sinks in local and regional carbon cycles. In this study, we report observations of these quantities in Nanjing at hourly intervals from March 2013 to August 2015, using a laser-based optical instrument. Nanjing is the second largest city located in the highly industrialized Yangtze River Delta (YRD), eastern China. The mean CO2 mole fraction and δ13C were (439.7 ± 7.5) µmol mol−1 and (−8.48 ± 0.56) ‰ over this observational period. The peak monthly mean δ13C (−7.44 ‰, July 2013) was 0.74 ‰ higher than that observed at Mount Waliguan, a WMO (World Meteorological Organization) baseline site on the Tibetan Plateau and upwind of the YRD region. The highly 13C-enriched signal was partly attributed to the influence of cement production in the region. By applying the Miller–Tans method to nighttime and daytime observations to represent signals from the city of Nanjing and the YRD, respectively, we showed that the 13C ∕ 12C ratio of CO2 sources in the Nanjing municipality was (0.21 ± 0.53) ‰ lower than that in the YRD. Flux partitioning calculations revealed that natural ecosystems in the YRD were a negligibly small source of atmospheric CO2.


2018 ◽  
Author(s):  
Junlan Feng ◽  
Yan Zhang ◽  
Shanshan Li ◽  
Jingbo Mao ◽  
Allison P. Patton ◽  
...  

Abstract. The Yangtze River Delta (YRD) and the megacity of Shanghai are host to one of the busiest port clusters in the world, the region also suffers from high levels of air pollution. The goal of this study was to estimate the contributions of shipping to emissions, air quality, and population exposure and characterize their dependence on the geographic spatiality of ship lanes from the regional scale to city scale for 2015. The WRF-CMAQ model was used to simulate the influence of coastal and inland-water shipping, in port emissions, shipping-related cargo transport on air quality and, population-weighted concentrations, a measure of human exposure. Our results showed that the impact of shipping on air quality in the YRD was attributable primarily to shipping emissions within 12 NM of shore, but emissions coming from the coastal area of 24 to 96 NM still contributed substantially to ship-related PM2.5 concentrations in YRD. The overall contribution of ships to PM2.5 concentration in YRD could reach to 4.62 μg/m3 in summer when monsoon winds transport shipping emissions onshore. In Shanghai city, inland-water going ships were major contributors (40–80 %) to the shipping impact on urban air quality. Given the proximity of inland-water ships to urban populations of Shanghai, the emissions of inland-water ships contributed more to population-weighted concentrations. These research results provide scientific evidence to inform policies for controlling future shipping emissions; in particular, stricter standards could be considered for the ships on inland rivers and other waterways close to residential regions.


2020 ◽  
Vol 12 (19) ◽  
pp. 7872
Author(s):  
Yijia Huang ◽  
Jiaqi Zhang ◽  
Jinqun Wu

Rapid urbanization has led to a growing number of environmental challenges in large parts of China, where the Yangtze River Delta (YRD) urban agglomerations serve as a typical example. To evaluate the relationship between environmental sustainability gaps and urbanization in 26 cities of the YRD, this study revisited the environmental sustainability assessment (ESA) by combining the metrics of environmental footprints and planetary boundaries at the city level, and then integrated the footprint-boundary ESA framework into decoupling analysis. The results demonstrated considerable spatiotemporal heterogeneity in the environmental sustainability of water use, land use, carbon emissions, nitrogen emissions, phosphorus emissions and PM2.5 emissions across the YRD cities during the study period 2007–2017. Decoupling analysis revealed a positive sign that more than half of the 26 cities had achieved the decoupling of each category of environmental sustainability gaps from urbanization since 2014, especially for nitrogen and phosphorus emissions. On the basis of ESA and decoupling analysis, all the cities were categorized into six patterns, for which the optimal pathways towards sustainable development were discussed in depth. Our study will assist policy makers in formulating more tangible and differentiated policies to achieve decoupling between environmental sustainability gaps and urbanization.


2020 ◽  
Vol 12 (10) ◽  
pp. 4131
Author(s):  
Wenbo Cai ◽  
Tong Wu ◽  
Wei Jiang ◽  
Wanting Peng ◽  
Yongli Cai

Transboundary environmental problems caused by urban expansion and economic growth cannot be solved by individual cities. Successful intercity environmental cooperation relies on the clear identification and definition of the rights and obligations of each city. An Ecosystem services (ES) approach not only budgets the ES supply and demand of a city, but also defines the spatial relationships between Services Provisioning Areas (SPA) and Services Benefiting Areas (SBA). However, to date, quantitative studies integrating ES budgets and spatial relations have been scarce. This study integrates ecosystem services supply–demand budgeting with flow direction analysis to identify intercity environmental cooperation in the highly urbanized Yangtze River Delta (YRD) region of China for water-related ecosystem services (flood protection, erosion regulation and water purification). The results demonstrated that there were significant spatial mismatches in the supply and demand of three water-related ES among 16 core cities in the YRD region: five to six cities in the southern part of the region had significant service surpluses, while ten to 11 cities in the north–central part had significant service deficits. We then went on to offer definitions for Ecosystem Services Surplus City, Ecosystem Services Deficit City and Ecosystem Services Balance City, as well as Service Provisioning City, Service Benefiting City and Service Connecting City in which to categorize cities in the YRD Region. Furthermore, we identified two intercity cooperation types and two non-cooperation types. This framework can be used to promote ecological integration in highly urbanized regions to advance sustainable development.


2020 ◽  
Author(s):  
Jianlin Hu ◽  
Lin Li ◽  
Jingyi Li ◽  
Xueying Wang ◽  
Kangjia Gong

<p>Although the air quality in China has been improved by collaborative efforts dedicating to mitigate the haze pollution, PM2.5 concentrations still remain high levels and the issue of increasing O<sub>3</sub> concentration has attracted more attention of the public. The YRD region has been suffering from both the PM2.5 and O3 pollution problems. To investigate the formation mechanisms and sources of PM2.5 and O3 in this region, a comprehensive EXPLORE-YRD campaign (EXPeriment on the eLucidation of theatmospheric Oxidation capacity and aerosol foRmation, and their Effects inYangtze River Delta) was carried out in May - June 2018. In this study, we investigate the contributions of different source categories to PM2.5 and O<sub>3</sub>. A source-oriented 3-D air quality model (CMAQ) was applied to analyze contributions of different emission sources to PM2.5 and O<sub>3 </sub>in the YRD region. Emissions were divided into eight source categories: industry, power, transportation, residential, agriculture, biogenic, wildfire, and other countries. Contribution from individual source category was quantified. The importance of anthropogenic and natural sources to PM2.5 and O<sub>3</sub> was discussed.</p>


2020 ◽  
Author(s):  
Jun Zheng ◽  
Xiaowen Shi ◽  
Yan Ma

<p>A suite of instruments were deployed to simultaneously measure nitrous acid (HONO), nitrogen oxides (NO<sub>x</sub>= NO + NO<sub>2</sub>), carbon monoxide (CO), ozone (O<sub>3</sub>), volatile organic compounds (VOCs, including formaldehyde (HCHO)) and meteorological parameters near a typical industrial zone in Nanjing of the Yangtze River Delta region, China. High levels of HONO were detected using a wet chemistry-based method. HONO ranged from 0.03-7.04 ppbv with an average of 1.32 ±0.92 ppbv. Elevated daytime HONO was frequently observed with a minimum of several hundreds of pptv on average, which cannot be explained by the homogeneous OH + NO reaction (P<sub>OH+NO</sub>) alone, especially during periods with high loadings of particulate matters (PM<sub>2.5</sub>). The HONO chemistry and its impact on atmospheric oxidation capacity in the study area were further investigated using a MCM-box model. The results show that the average hydroxyl radical (OH) production rate was dominated by the photolysis of HONO (7.13×10<sup>6</sup>molecules cm<sup>-3 </sup>s<sup>-1</sup>), followed by ozonolysis of alkenes (3.94×10<sup>6</sup>molecules cm<sup>-3 </sup>s<sup>-1</sup>), photolysis of O<sub>3</sub>(2.46×10<sup>6</sup>molecules cm<sup>-3 </sup>s<sup>-1</sup>) and photolysis of HCHO (1.60×10<sup>6</sup>molecules cm<sup>-3 </sup>s<sup>-1</sup>), especially within the plumes originated from the industrial zone. The observed similarity between HONO/NO<sub>2</sub>and HONO in diurnal profiles strongly suggests that HONO in the study area was likely originated from NO<sub>2</sub>heterogeneous reactions. The averagenighttimeNO<sub>2</sub>to HONO conversion ratewas determined to be ~0.9% hr<sup>-1</sup>. Good correlation between nocturnal HONO/NO<sub>2</sub>and the products of particle surface area density (S/V) and relative humidity (RH), S/V×RH,supports the heterogeneous NO<sub>2</sub>/H<sub>2</sub>O reaction mechanism. The other HONO source, designated as P<sub>unknonwn</sub>, was about twice as much as P<sub>OH+NO </sub>on average and displayed a diurnal profile with an evidently photo-enhanced feature, i.e., photosensitized reactions of NO<sub>2</sub>may be an important daytime HONO source. Nevertheless, our results suggest that daytime HONO formation was mostly due to the light-induced conversion of NO<sub>2</sub>on aerosol surfaces but heterogeneous NO<sub>2</sub>reactions on ground surface dominated nocturnal HONO production. Concurred elevated HONO and PM<sub>2.5</sub>levels strongly indicate that high HONO may increase the atmospheric oxidation capacity and further promote the formation of secondary aerosols, which may in turn synergistically boost NO<sub>2</sub>/HONO conversion by providing more heterogeneous reaction sites.</p>


2016 ◽  
Author(s):  
Lei Shu ◽  
Min Xie ◽  
Tijian Wang ◽  
Pulong Chen ◽  
Yong Han ◽  
...  

Abstract. Severe high ozone (O3) episodes usually have close relations to synoptic systems. A regional continuous O3 pollution episode is detected over the Yangtze River Delta (YRD) region in China during August 7–12, 2013, in which the O3 concentrations in more than half of the cities exceeding the national air quality standard. The maximum hourly concentration of O3 reaches 167.1 ppb. By means of the observational analysis and the WRF/CMAQ numerical simulation, the characteristics and the essential impact factors of the typical regional O3 pollution is integratedly investigated. The observational analysis shows that the atmospheric subsidence dominated by Western Pacific subtropical high plays a crucial role in the formation of high-level O3. The favorable weather conditions, such as extremely high temperature, low relative humidity and weak wind speed, caused by the abnormal strong subtropical high are responsible for the trapping and the chemical production of O3 in the boundary layer. In addition, when the YRD cities at the front of Typhoon Utor, the periphery circulation of typhoon system can enhance the downward airflows and cause worse air pollution. But when the typhoon system weakens the subtropical high, the prevailing southeasterly surface wind leads to the mitigation of the O3 pollution. The Integrated Process Rate (IPR) analysis incorporated in CMAQ is applied to further illustrate the combined influence of subtropical high and typhoon system in this O3 episode. The results show that the vertical diffusion (VDIF) and the gas-phase chemistry (CHEM) are two major contributors to O3 formation. During the episode, the contributions of VDIF and CHEM to O3 maintain the high values over 10 ppb/h in Shanghai, Hangzhou, and Nanjing. On August 10–11, the cities close to the sea are apparently affected by the typhoon system, with the contribution of VDIF increasing to 28.45 ppb/h in Shanghai and 19.76 ppb/h in Hangzhou. When the YRD region is under the control of the typhoon system, the contribution values of all individual processes decrease to a low level in all cities. These results provide an insight for the O3 pollution synthetically impacted by the Western Pacific subtropical high and the tropical cyclone system.


2013 ◽  
Vol 13 (8) ◽  
pp. 21507-21540
Author(s):  
X. Fu ◽  
S. X. Wang ◽  
Z. Cheng ◽  
J. Xing ◽  
B. Zhao ◽  
...  

Abstract. During 1 to 6 May 2011, a dust event was observed in the Yangtze River Delta region (YRD). The highest PM10 concentration reached over 1000 μg m−3 and the visibility was below 3 km. In this study, the Community Multi-scale Air Quality modeling system (CMAQ5.0) coupled with an in-line windblown dust model was used to simulate the formation, spatial and temporal characteristics of this dust event, and analyze its impacts on deposition and photochemistry. The threshold friction velocity for loose smooth surface in the dust model was revised based on Chinese data to improve the model performance. The comparison between predictions and observations indicates the revised model can reproduce the transport and pollution of the event. The simulation results show that the dust event was affected by formation and transport of Mongolian cyclone and cold air. Totally about 695 kt dust particles (PM10) were emitted in Xinjiang Province and Mongolia during 28 to 30 April, the dust band swept northern, eastern China and then arrived in the YRD region on 1 May 2011. The transported dust particles increased the mean surface layer concentrations of PM10 in the YRD region by 372% during 1 to 6 May and the impacts weakened from north to south due to the removal of dust particles along the path. Accompanied by high PM concentration, the dry deposition, wet deposition and total deposition of PM10 in the YRD reached 184.7 kt, 172.6 kt and 357.32 kt, respectively. These deposited particles are very harmful because of their impacts on urban environment as well as air quality and human health when resuspending in the atmosphere. Due to the impacts of mineral dust on atmospheric photolysis, the concentrations of O3 and OH were reduced by 1.5% and 3.1% in the whole China, and by 9.4% and 12.1% in the YRD region, respectively. The work of this manuscript is meaningful for understanding the dust emissions in China as well as for the application of CMAQ in Asia. It is also helpful to understand the formation mechanism and impacts of dust pollution in the YRD.


Sign in / Sign up

Export Citation Format

Share Document