scholarly journals Review of Maasakkers et al.: Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015

2019 ◽  
Author(s):  
Anonymous
2015 ◽  
Vol 15 (8) ◽  
pp. 11853-11888
Author(s):  
R. Locatelli ◽  
P. Bousquet ◽  
M. Saunois ◽  
F. Chevallier ◽  
C. Cressot

Abstract. With the densification of surface observing networks and the development of remote sensing of greenhouse gases from space, estimations of methane (CH4) sources and sinks by inverse modelling face new challenges. Indeed, the chemical transport model used to link the flux space with the mixing ratio space must be able to represent these different types of constraints for providing consistent flux estimations. Here we quantify the impact of sub-grid scale physical parameterization errors on the global methane budget inferred by inverse modelling using the same inversion set-up but different physical parameterizations within one chemical-transport model. Two different schemes for vertical diffusion, two others for deep convection, and one additional for thermals in the planetary boundary layer are tested. Different atmospheric methane datasets are used as constraints (surface observations or satellite retrievals). At the global scale, methane emissions differ, on average, from 4.1 Tg CH4 per year due to the use of different sub-grid scale parameterizations. Inversions using satellite total-column retrieved by GOSAT satellite are less impacted, at the global scale, by errors in physical parameterizations. Focusing on large-scale atmospheric transport, we show that inversions using the deep convection scheme of Emanuel (1991) derive smaller interhemispheric gradient in methane emissions. At regional scale, the use of different sub-grid scale parameterizations induces uncertainties ranging from 1.2 (2.7%) to 9.4% (14.2%) of methane emissions in Africa and Eurasia Boreal respectively when using only surface measurements from the background (extended) surface network. When using only satellite data, we show that the small biases found in inversions using GOSAT-CH4 data and a coarser version of the transport model were actually masking a poor representation of the stratosphere–troposphere gradient in the model. Improving the stratosphere–troposphere gradient reveals a larger bias in GOSAT-CH4 satellite data, which largely amplifies inconsistencies between surface and satellite inversions. A simple bias correction is proposed. The results of this work provide the level of confidence one can have for recent methane inversions relatively to physical parameterizations included in chemical-transport models.


2014 ◽  
Vol 7 (4) ◽  
pp. 1003-1010 ◽  
Author(s):  
N. M. Gavrilov ◽  
M. V. Makarova ◽  
A. V. Poberovskii ◽  
Yu. M. Timofeyev

Abstract. Atmospheric column-average methane mole fractions measured with ground-based Fourier-transform spectroscopy near Saint Petersburg, Russia (59.9° N, 29.8° E, 20 m a.s.l.) are compared with similar data obtained with the Japanese GOSAT (Greenhouse gases Observing SATellite) in the years 2009–2012. Average CH4 mole fractions for the GOSAT data version V01.xx are −15.0 ± 5.4 ppb less than the corresponding values obtained from ground-based measurements (with the standard deviations of biases at 13.0 ± 4.2 ppb). For the GOSAT data version V02.xx, the average values of the differences are −1.9 ± 1.8 ppb with standard deviations of 14.5 ± 1.3 ppb. This verifies that FTIR (Fourier transform infrared) spectroscopic observations near Saint Petersburg have similar biases with GOSAT satellite data as FTIR measurements at other ground-based networks and aircraft CH4 estimations.


1991 ◽  
Vol 11 (3) ◽  
pp. 51-54 ◽  
Author(s):  
L.L. Stowe ◽  
E.P. McClain ◽  
R. Carey ◽  
P. Pellegrino ◽  
G.G. Gutman ◽  
...  

2019 ◽  
Author(s):  
Joannes D. Maasakkers ◽  
Daniel J. Jacob ◽  
Melissa P. Sulprizio ◽  
Tia R. Scarpelli ◽  
Hannah Nesser ◽  
...  

Abstract. We use 2010–2015 observations of atmospheric methane columns from the GOSAT satellite instrument in a global inverse analysis to improve estimates of methane emissions and their trends over the period, as well as the global concentration of tropospheric OH (the hydroxyl radical, methane's main sink) and its trend. Our inversion solves the Bayesian optimization problem analytically including closed-form characterization of errors. This allows us to (1) quantify the information content from the inversion towards optimizing methane emissions and its trends, (2) diagnose error correlations between constraints on emissions and OH concentrations, and (3) generate a large ensemble of solutions testing different assumptions in the inversion. We show how the analytical approach can be used even when prior error standard deviation distributions are log-normal. Inversion results show large overestimates of Chinese coal emissions and Middle East oil/gas emissions in the EDGAR v4.3.2 inventory, but little error in the US where we use a new gridded version of the EPA national greenhouse gas inventory as prior estimate. Oil/gas emissions in the EDGAR v4.3.2 inventory show large differences with national totals reported to the United Nations Framework Convention on Climate Change (UNFCCC) and our inversion is generally more consistent with the UNFCCC data. The observed 2010–2015 growth in atmospheric methane is attributed mostly to an increase in emissions from India, China, and areas with large tropical wetlands. The contribution from OH trends is small in comparison. We find that the inversion provides strong independent constraints on global methane emissions (546 Tg a−1) and global mean OH concentrations (atmospheric methane lifetime against oxidation by tropospheric OH of 10.8 ± 0.4 years), indicating that satellite observations of atmospheric methane could provide a proxy for OH concentrations in the future.


2014 ◽  
Vol 119 (12) ◽  
pp. 7741-7756 ◽  
Author(s):  
Kevin J. Wecht ◽  
Daniel J. Jacob ◽  
Christian Frankenberg ◽  
Zhe Jiang ◽  
Donald R. Blake

2016 ◽  
Vol 43 (5) ◽  
pp. 2218-2224 ◽  
Author(s):  
A. J. Turner ◽  
D. J. Jacob ◽  
J. Benmergui ◽  
S. C. Wofsy ◽  
J. D. Maasakkers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document