scholarly journals Supplementary material to "Characterizing the diurnal cycle of South Atlantic stratocumulus cloud properties from satellite retrievals"

Author(s):  
Chellappan Seethala ◽  
Jan Fokke Meirink ◽  
Ákos Horváth ◽  
Ralf Bennartz ◽  
Rob Roebeling
2010 ◽  
Vol 10 (14) ◽  
pp. 6527-6536 ◽  
Author(s):  
M. A. Brunke ◽  
S. P. de Szoeke ◽  
P. Zuidema ◽  
X. Zeng

Abstract. Here, liquid water path (LWP), cloud fraction, cloud top height, and cloud base height retrieved by a suite of A-train satellite instruments (the CPR aboard CloudSat, CALIOP aboard CALIPSO, and MODIS aboard Aqua) are compared to ship observations from research cruises made in 2001 and 2003–2007 into the stratus/stratocumulus deck over the southeast Pacific Ocean. It is found that CloudSat radar-only LWP is generally too high over this region and the CloudSat/CALIPSO cloud bases are too low. This results in a relationship (LWP~h9) between CloudSat LWP and CALIPSO cloud thickness (h) that is very different from the adiabatic relationship (LWP~h2) from in situ observations. Such biases can be reduced if LWPs suspected to be contaminated by precipitation are eliminated, as determined by the maximum radar reflectivity Zmax>−15 dBZ in the apparent lower half of the cloud, and if cloud bases are determined based upon the adiabatically-determined cloud thickness (h~LWP1/2). Furthermore, comparing results from a global model (CAM3.1) to ship observations reveals that, while the simulated LWP is quite reasonable, the model cloud is too thick and too low, allowing the model to have LWPs that are almost independent of h. This model can also obtain a reasonable diurnal cycle in LWP and cloud fraction at a location roughly in the centre of this region (20° S, 85° W) but has an opposite diurnal cycle to those observed aboard ship at a location closer to the coast (20° S, 75° W). The diurnal cycle at the latter location is slightly improved in the newest version of the model (CAM4). However, the simulated clouds remain too thick and too low, as cloud bases are usually at or near the surface.


2014 ◽  
Vol 7 (4) ◽  
pp. 1733-1766 ◽  
Author(s):  
D. Barahona ◽  
A. Molod ◽  
J. Bacmeister ◽  
A. Nenes ◽  
A. Gettelman ◽  
...  

Abstract. This work presents the development of a two-moment cloud microphysics scheme within version 5 of the NASA Goddard Earth Observing System (GEOS-5). The scheme includes the implementation of a comprehensive stratiform microphysics module, a new cloud coverage scheme that allows ice supersaturation, and a new microphysics module embedded within the moist convection parameterization of GEOS-5. Comprehensive physically based descriptions of ice nucleation, including homogeneous and heterogeneous freezing, and liquid droplet activation are implemented to describe the formation of cloud particles in stratiform clouds and convective cumulus. The effect of preexisting ice crystals on the formation of cirrus clouds is also accounted for. A new parameterization of the subgrid-scale vertical velocity distribution accounting for turbulence and gravity wave motion is also implemented. The new microphysics significantly improves the representation of liquid water and ice in GEOS-5. Evaluation of the model against satellite retrievals and in situ observations shows agreement of the simulated droplet and ice crystal effective radius, the ice mass mixing ratio and number concentration, and the relative humidity with respect to ice. When using the new microphysics, the fraction of condensate that remains as liquid follows a sigmoidal dependency with temperature, which is in agreement with observations and which fundamentally differs from the linear increase assumed in most models. The performance of the new microphysics in reproducing the observed total cloud fraction, longwave and shortwave cloud forcing, and total precipitation is similar to the operational version of GEOS-5 and in agreement with satellite retrievals. The new microphysics tends to underestimate the coverage of persistent low-level stratocumulus. Sensitivity studies showed that the simulated cloud properties are robust to moderate variation in cloud microphysical parameters. Significant sensitivity remains to variation in the dispersion of the ice crystal size distribution and the critical size for ice autoconversion. Despite these issues, the implementation of the new microphysics leads to a considerably improved and more realistic representation of cloud processes in GEOS-5, and allows the linkage of cloud properties to aerosol emissions.


2018 ◽  
Author(s):  
Chellappan Seethala ◽  
Jan Fokke Meirink ◽  
Ákos Horváth ◽  
Ralf Bennartz ◽  
Rob Roebeling

Abstract. Marine stratocumulus (Sc) clouds play an essential role in the earth radiation budget. Here, we compare liquid water path (LWP), optical thickness (COT), and effective radius (CER) retrievals from two years of collocated Spinning Enhanced Visible and InfraRed Imager (SEVIRI), MODerate resolution Imaging Spectroradiometer (MODIS), and Tropical Rainfall Measuring Mission Microwave Imager (TMI) observations, estimate the effect of biomass burning smoke on passive imager retrievals, as well as evaluate the diurnal cycle of South Atlantic marine Sc clouds. The effect of absorbing aerosols from biomass burning on the retrievals was investigated using aerosol index (AI) obtained from the Ozone Monitoring Instrument (OMI). SEVIRI and MODIS LWPs were found to decrease with increasing AI relative to TMI LWP, consistent with well-known negative visible/near-infrared retrieval biases in COT and CER. In the aerosol-affected months of July–August–September, SEVIRI LWP – based on the 1.6-µm CER – was biased low by 14 g m−2 (~ 16 %) compared to TMI in overcast scenes, while MODIS LWP showed a smaller low bias of 4 g m−2 (~ 5 %) for the 1.6-µm channel and a high bias of 8 g m−2 (~ 10 %) for the 3.7-µm channel compared to TMI. Neglecting aerosol-affected pixels reduced the mean SEVIRI-TMI LWP bias considerably. On a two-year data base, SEVIRI LWP had a correlation with TMI and MODIS LWP of about 0.86 and 0.94, respectively, and biases of only 4–8 g m−2 (5–10 %) for overcast cases. The SEVIRI LWP diurnal cycle was in good overall agreement with TMI except in the aerosol-affected months. Both TMI and SEVIRI LWP decreased from morning to late afternoon, after which a slight increase was observed. Terra and Aqua MODIS mean LWPs also suggested a similar diurnal variation. The relative amplitude of the two-year mean and seasonal mean LWP diurnal cycle varied between 35–40 % from morning to late afternoon for overcast cases. The diurnal variation in SEVIRI LWP was mainly due to changes in COT, while CER showed only little diurnal variability.


2020 ◽  
Author(s):  
Ian Chang ◽  

<p>The southeast Atlantic serves as a natural laboratory for studying aerosol-cloud-radiation interactions due to the abundant presence of quasi-permanent stratocumulus and overlying biomass burning smoke aerosols during austral winters. Aerosol and cloud properties from the Spectrometers for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) and Solar Spectral Flux Radiometer (SSFR) on board NASA P-3 and High Spectral Resolution Lidar (HSRL) on board NASA ER-2 during the NASA ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) field campaign are used to compare with satellite retrievals. Aerosol and cloud properties from regional climate models such as WRF-Chem, WRF-Chem (with CAM5), ALADIN, GEOS-CHEM, EAM-E3SM, MERRA-2, and GEOS-5 with aerosol schemes are also compared against airborne measurements and satellite retrievals to evaluate and address the current model deficiencies in the southeast Atlantic. A preliminary estimate of the direct aerosol radiative effects over the southeast Atlantic will be presented.</p>


2006 ◽  
Vol 19 (21) ◽  
pp. 5531-5553 ◽  
Author(s):  
C. J. Stubenrauch ◽  
A. Chédin ◽  
G. Rädel ◽  
N. A. Scott ◽  
S. Serrar

Abstract Eight years of cloud properties retrieved from Television Infrared Observation Satellite-N (TIROS-N) Observational Vertical Sounder (TOVS) observations aboard the NOAA polar orbiting satellites are presented. The relatively high spectral resolution of these instruments in the infrared allows especially reliable cirrus identification day and night. This dataset therefore provides complementary information to the International Satellite Cloud Climatology Project (ISCCP). According to this dataset, cirrus clouds cover about 27% of the earth and 45% of the Tropics, whereas ISCCP reports 19% and 25%, respectively. Both global datasets agree within 5% on the amount of single-layer low clouds, at 30%. From 1987 to 1995, global cloud amounts remained stable to within 2%. The seasonal cycle of cloud amount is in general stronger than its diurnal cycle and it is stronger than the one of effective cloud amount, the latter the relevant variable for radiative transfer. Maximum effective low cloud amount over ocean occurs in winter in SH subtropics in the early morning hours and in NH midlatitudes without diurnal cycle. Over land in winter the maximum is in the early afternoon, accompanied in the midlatitudes by thin cirrus. Over tropical land and in the other regions in summer, the maximum of mesoscale high opaque clouds occurs in the evening. Cirrus also increases during the afternoon and persists during night and early morning. The maximum of thin cirrus is in the early afternoon, then decreases slowly while cirrus and high opaque clouds increase. TOVS extends information of ISCCP during night, indicating that high cloudiness, increasing during the afternoon, persists longer during night in the Tropics and subtropics than in midlatitudes. A comparison of seasonal and diurnal cycle of high cloud amount between South America, Africa, and Indonesia during boreal winter has shown strong similarities between the two land regions, whereas the Indonesian islands show a seasonal and diurnal behavior strongly influenced by the surrounding ocean. Deeper precipitation systems over Africa than over South America do not seem to be directly reflected in the horizontal coverage and mesoscale effective emissivity of high clouds.


2009 ◽  
Vol 2 (1) ◽  
pp. 309-340
Author(s):  
J. M. Edwards

Abstract. Recently there has been significant progress in the retrieval of land surface temperature from satellite observations. Satellite retrievals of surface temperature offer several advantages, including broad spatial coverage, and such data are potentially of great value in assessing general circulation models of the atmosphere. Here, retrievals of the land surface temperature over the contiguous United States are compared with simulations from two climate models. The models generally simulate the diurnal range realistically, but show significant warm biases during the summer. The models' diurnal cycle of surface temperature is related to their surface flux budgets. Differences in the diurnal cycle of the surface flux budget between the models are found to be more pronounced than those in the diurnal cycle of surface temperature.


Sign in / Sign up

Export Citation Format

Share Document