scholarly journals The effect of atmospheric nudging on the stratospheric residual circulation in chemistry-climate models

2019 ◽  
Author(s):  
Andreas Chrysanthou ◽  
Amanda C. Maycock ◽  
Martyn P. Chipperfield ◽  
Sandip Dhomse ◽  
Hella Garny ◽  
...  

Abstract. We perform the first multi-model comparison of the impact of nudged meteorology on the stratospheric residual circulation using hindcast simulations from the Chemistry Climate Model Initiative (CCMI). We examine simulations over the period 1980–2009 from 5 models in which the meteorological fields are nudged towards reanalysis data and compare with equivalent free-running simulations from 9 models. We show that nudging meteorology does not constrain the mean strength of the stratospheric residual circulation and that the inter-model spread is similar, or even larger, than in the free-running simulations. The nudged simulations also simulate stronger upwelling in the tropical lower stratosphere compared to the residual circulation estimated directly from the reanalyses they are nudged towards. Downward control calculations reveal substantial differences between the mean lower stratospheric tropical upward mass flux (TUMF) computed from the modeled wave forcing and that calculated directly from the residual circulation. Although the mean circulation is poorly constrained, the nudged simulations show a high degree of consistency in the interannual variability of the TUMF in the lower stratosphere, which is related to the contribution to variability from the resolved wave forcing. We apply a multiple linear regression (MLR) model to separate the drivers of interannual and long-term variations in the simulated TUMF. The MLR model explains up to ~ 75 % of the variance in TUMF in the nudged simulations and reveals a statistically significant positive trend for most models in TUMF over the period 1980–2009. Overall, nudging meteorological fields leads to increased inter-model spread for most of the measures of the mean climatological stratospheric residual circulation assessed in this study. Our findings show that while nudged simulations by construction produce accurate temperatures and realistic representations of fast horizontal transport, this is not necessarily the case for the slower zonal mean vertical transport. Consequently, caution is required when using nudged simulations to interpret long-lived stratospheric tracers that are controlled by the residual circulation.

2019 ◽  
Vol 19 (17) ◽  
pp. 11559-11586 ◽  
Author(s):  
Andreas Chrysanthou ◽  
Amanda C. Maycock ◽  
Martyn P. Chipperfield ◽  
Sandip Dhomse ◽  
Hella Garny ◽  
...  

Abstract. We perform the first multi-model intercomparison of the impact of nudged meteorology on the stratospheric residual circulation using hindcast simulations from the Chemistry–Climate Model Initiative (CCMI). We examine simulations over the period 1980–2009 from seven models in which the meteorological fields are nudged towards a reanalysis dataset and compare these with their equivalent free-running simulations and the reanalyses themselves. We show that for the current implementations, nudging meteorology does not constrain the mean strength of the stratospheric residual circulation and that the inter-model spread is similar, or even larger, than in the free-running simulations. The nudged models generally show slightly stronger upwelling in the tropical lower stratosphere compared to the free-running versions and exhibit marked differences compared to the directly estimated residual circulation from the reanalysis dataset they are nudged towards. Downward control calculations applied to the nudged simulations reveal substantial differences between the climatological lower-stratospheric tropical upward mass flux (TUMF) computed from the modelled wave forcing and that calculated directly from the residual circulation. This explicitly shows that nudging decouples the wave forcing and the residual circulation so that the divergence of the angular momentum flux due to the mean motion is not balanced by eddy motions, as would typically be expected in the time mean. Overall, nudging meteorological fields leads to increased inter-model spread for most of the measures of the mean climatological stratospheric residual circulation assessed in this study. In contrast, the nudged simulations show a high degree of consistency in the inter-annual variability in the TUMF in the lower stratosphere, which is primarily related to the contribution to variability from the resolved wave forcing. The more consistent inter-annual variability in TUMF in the nudged models also compares more closely with the variability found in the reanalyses, particularly in boreal winter. We apply a multiple linear regression (MLR) model to separate the drivers of inter-annual and long-term variations in the simulated TUMF; this explains up to ∼75 % of the variance in TUMF in the nudged simulations. The MLR model reveals a statistically significant positive trend in TUMF for most models over the period 1980–2009. The TUMF trend magnitude is generally larger in the nudged models compared to their free-running counterparts, but the intermodel range of trends doubles from around a factor of 2 to a factor of 4 due to nudging. Furthermore, the nudged models generally do not match the TUMF trends in the reanalysis they are nudged towards for trends over different periods in the interval 1980–2009. Hence, we conclude that nudging does not strongly constrain long-term trends simulated by the chemistry–climate model (CCM) in the residual circulation. Our findings show that while nudged simulations may, by construction, produce accurate temperatures and realistic representations of fast horizontal transport, this is not typically the case for the slower zonal mean vertical transport in the stratosphere. Consequently, caution is required when using nudged simulations to interpret the behaviour of stratospheric tracers that are affected by the residual circulation.


2011 ◽  
Vol 68 (6) ◽  
pp. 1214-1233 ◽  
Author(s):  
Hella Garny ◽  
Martin Dameris ◽  
William Randel ◽  
Greg E. Bodeker ◽  
Rudolf Deckert

Abstract Drivers of upwelling in the tropical lower stratosphere are investigated using the E39C-A chemistry–climate model. The climatological annual cycle in upwelling and its wave forcing are compared to the interim ECMWF Re-Analysis (ERA-Interim). The strength in tropical upwelling and its annual cycle can be largely explained by local resolved wave forcing. The climatological mean forcing is due to both stationary planetary-scale waves that originate in the tropics and extratropical transient synoptic-scale waves that are refracted equatorward. Increases in atmospheric greenhouse gas (GHG) concentrations to 2050 force a year-round positive trend in tropical upwelling, which maximizes in the lowermost stratosphere. Tropical ascent is balanced by downwelling between 20° and 40°. Strengthening of tropical upwelling can be explained by stronger local forcing by resolved wave flux convergence, which is driven in turn by processes initiated by increases in tropical sea surface temperatures (SSTs). Higher tropical SSTs cause a strengthening of the subtropical jets and modification of deep convection affecting latent heat release. While the former can modify wave propagation and dissipation, the latter affects tropical wave generation. The dominant mechanism leading to enhanced vertical wave propagation into the lower stratosphere is an upward shift of the easterly shear zone due to the strengthening and upward shift of the subtropical jets.


2019 ◽  
Author(s):  
Nicholas A. Davis ◽  
Sean M. Davis ◽  
Robert W. Portmann ◽  
Eric Ray ◽  
Karen H. Rosenlof ◽  
...  

Abstract. Specified dynamics (SD) schemes relax the circulation in climate models toward a reference meteorology to simulate historical variability. These simulations are widely used to isolate the dynamical contributions to variability and trends in trace gas species. However, it is not clear if trends in the stratospheric overturning circulation are properly reproduced by SD schemes. This study assesses numerous SD schemes and modeling choices in the Community Earth System Model (CESM) Whole Atmosphere Chemistry Climate Model (WACCM) to determine a set of best practices for reproducing interannual variability and trends in tropical stratospheric upwelling estimated by reanalyses. Nudging toward the reanalysis meteorology as is typically done in SD simulations expectedly changes the model’s mean upwelling compared to its free-running state, but does not accurately reproduce upwelling trends present in the underlying reanalysis. In contrast, nudging to anomalies from the climatological winds or from the zonal mean winds and temperatures preserves WACCM’s climatology and better reproduces trends in stratospheric upwelling. An SD scheme’s performance in simulating the acceleration of the shallow branch of the mean meridional circulation from 1980–2017 hinges on its ability to simulate the downward shift of subtropical lower stratospheric wave momentum forcing. Key to this is not nudging the zonal-mean temperature field. Gravity wave momentum forcing, which drives a substantial fraction of the upwelling in WACCM, cannot be constrained by nudging and presents an upper-limit on the performance of these schemes.


2003 ◽  
Vol 3 (4) ◽  
pp. 3681-3711
Author(s):  
D. Lamago ◽  
M. Dameris ◽  
C. Schnadt ◽  
V. Eyring ◽  
C. Brühl

Abstract. Actinic fluxes at high solar zenith angles (SZAs) are important for atmospheric chemistry, especially under twilight conditions in polar winter and spring. The results of a sensitivity experiment employing the fully coupled 3D chemistry-climate model ECHAM4.L39(DLR)/CHEM have been analysed to quantify the impact of SZAs greater than 87.5° on dynamical and chemical processes in the lower stratosphere, in particular their influence on the ozone layer. Although the actinic fluxes at SZAs larger than 87.5° are small, ozone concentrations are significantly affected because daytime photolytic ozone destruction is switched on earlier, especially the conversion of Cl2 and Cl2O2 into ClO at the end of polar night in the lower stratosphere. Comparing climatological mean ozone column values of a simulation considering SZAs up to 93° with those of the sensitivity run with SZAs confined to 87.5° total ozone is reduced by about 20% in the polar Southern Hemisphere, i.e., the ozone hole is "deeper'' if twilight conditions are considered in the model because there is 2–3 weeks more time for ozone destruction. This causes an additional cooling of the polar lower stratosphere (50 hPa) up to −4 K with obvious consequences for chemical processes. In the Northern Hemisphere the impact of high SZAs cannot be determined on the basis of climatological mean values due to the pronounced dynamic variability of the stratosphere in winter and spring.


2009 ◽  
Vol 9 (1) ◽  
pp. 1977-2020
Author(s):  
F. Khosrawi ◽  
R. Müller ◽  
M. H. Proffitt ◽  
R. Ruhnke ◽  
O. Kirner ◽  
...  

Abstract. 1-year data sets of monthly averaged nitrous oxide (N2O) and ozone (O3) derived from satellite measurements were used as a tool for the evaluation of atmospheric photochemical models. Two 1-year data sets, one derived from the Improved Limb Atmospheric Spectrometer (ILAS and ILAS-II) and one from the Odin Sub-Millimetre Radiometer (Odin/SMR) were employed. Here, these data sets are used for the evaluation of two Chemical Transport Models (CTMs), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA) and the Chemical Lagrangian Model of the Stratosphere (CLaMS) as well as for one Chemistry-Climate Model (CCM), the atmospheric chemistry general circulation model ECHAM5/MESSy1 (E5M1) in the lower stratosphere with focus on the Northern Hemisphere. Since the Odin/SMR measurements cover the entire hemisphere, the evaluation is performed for the entire hemisphere as well as for the low latitudes, midlatitudes and high latitudes using the Odin/SMR 1-year data set as reference. To assess the impact of using different data sets for such an evaluation study we repeat the evaluation for the polar lower stratosphere using the ILAS/ILAS-II data set. Only small differences were found using ILAS/ILAS-II instead of Odin/SMR as a reference, thus, showing that the results are not influenced by the particular satellite data set used for the evaluation. The evaluation of CLaMS, KASIMA and E5M1 shows that all models are in good agreement with Odin/SMR and ILAS/ILAS-II. Differences are generally in the range of ±20%. Larger differences (up to −40%) are found in all models at 500±25 K for N2O mixing ratios greater than 200 ppb. Generally, the largest differences were found for the tropics and the lowest for the polar regions. However, an underestimation of polar winter ozone loss was found both in KASIMA and E5M1 both in the Northern and Southern Hemisphere.


2019 ◽  
Author(s):  
Kristian Strommen ◽  
Hannah M. Christensen ◽  
David MacLeod ◽  
Stephan Juricke ◽  
Tim N. Palmer

Abstract. We introduce and study the impact of three stochastic schemes in the EC-Earth climate model, two atmospheric schemes and one stochastic land scheme. These form the basis for a probabilistic earth-system model in atmosphere-only mode. Stochastic parametrisations have become standard in several operational weather-forecasting models, in particular due to their beneficial impact on model spread. In recent years, stochastic schemes in the atmospheric component of a model have been shown to improve aspects important for the models long-term climate, such as ENSO, North Atlantic weather regimes and the Indian monsoon. Stochasticity in the land-component has been shown to improve variability of soil processes and improve the representation of heatwaves over Europe. However, the raw impact of such schemes on the model mean is less well studied, It is shown that the inclusion all three schemes notably change the model mean state. While many of the impacts are beneficial, some are too large in amplitude, leading to large changes in the model's energy budget. This implies that in order to keep the benefits of stochastic physics without shifting the mean state too far from observations, a full re-tuning of the model will typically be required.


2013 ◽  
Vol 6 (4) ◽  
pp. 937-948 ◽  
Author(s):  
M. Toohey ◽  
T. von Clarmann

Abstract. Climatologies of atmospheric observations are often produced by binning measurements according to latitude and calculating zonal means. The uncertainty in these climatological means is characterised by the standard error of the mean (SEM). However, the usual estimator of the SEM, i.e., the sample standard deviation divided by the square root of the sample size, holds only for uncorrelated randomly sampled measurements. Measurements of the atmospheric state along a satellite orbit cannot always be considered as independent because (a) the time-space interval between two nearest observations is often smaller than the typical scale of variations in the atmospheric state, and (b) the regular time-space sampling pattern of a satellite instrument strongly deviates from random sampling. We have developed a numerical experiment where global chemical fields from a chemistry climate model are sampled according to real sampling patterns of satellite-borne instruments. As case studies, the model fields are sampled using sampling patterns of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and Atmospheric Chemistry Experiment Fourier-Transform Spectrometer (ACE-FTS) satellite instruments. Through an iterative subsampling technique, and by incorporating information on the random errors of the MIPAS and ACE-FTS measurements, we produce empirical estimates of the standard error of monthly mean zonal mean model O3 in 5° latitude bins. We find that generally the classic SEM estimator is a conservative estimate of the SEM, i.e., the empirical SEM is often less than or approximately equal to the classic estimate. Exceptions occur only when natural variability is larger than the random measurement error, and specifically in instances where the zonal sampling distribution shows non-uniformity with a similar zonal structure as variations in the sampled field, leading to maximum sensitivity to arbitrary phase shifts between the sample distribution and sampled field. The occurrence of such instances is thus very sensitive to slight changes in the sampling distribution, and to the variations in the measured field. This study highlights the need for caution in the interpretation of the oft-used classically computed SEM, and outlines a relatively simple methodology that can be used to assess one component of the uncertainty in monthly mean zonal mean climatologies produced from measurements from satellite-borne instruments.


2018 ◽  
Vol 18 (14) ◽  
pp. 10655-10674 ◽  
Author(s):  
Jan Karlický ◽  
Peter Huszár ◽  
Tomáš Halenka ◽  
Michal Belda ◽  
Michal Žák ◽  
...  

Abstract. Cities are characterized by different physical properties of surface compared to their rural counterparts, resulting in a specific regime of the meteorological phenomenon. Our study aims to evaluate the impact of typical urban surfaces on the central European urban climate in several model simulations, performed with the Weather Research and Forecasting (WRF) model and Regional Climate Model (RegCM). The specific processes occurring in the typical urban environment are described in the models by various types of urban parameterizations, greatly differing in complexity. Our results show that all models and urban parameterizations are able to reproduce the most typical urban effect, the summer evening and nocturnal urban heat island, with the average magnitude of 2–3 °C. The impact of cities on the wind is clearly dependent on the urban parameterization employed, with more simple ones unable to fully capture the wind speed reduction induced by the city. In the summer, a significant difference in the boundary-layer height (about 25 %) between models is detected. The urban-induced changes of temperature and wind speed are propagated into higher altitudes up to 2 km, with a decreasing tendency of their magnitudes. With the exception of the daytime in the summer, the urban environment improves the weather conditions a little with regard to the pollutant dispersion, which could lead to the partly decreased concentration of the primary pollutants.


2019 ◽  
Vol 19 (11) ◽  
pp. 7627-7647 ◽  
Author(s):  
Petr Šácha ◽  
Roland Eichinger ◽  
Hella Garny ◽  
Petr Pišoft ◽  
Simone Dietmüller ◽  
...  

Abstract. Climate model simulations show an acceleration of the Brewer–Dobson circulation (BDC) in response to climate change. While the general mechanisms for the BDC strengthening are widely understood, there are still open questions concerning the influence of the details of the wave driving. Mean age of stratospheric air (AoA) is a useful transport diagnostic for assessing changes in the BDC. Analyzing AoA from a subset of Chemistry–Climate Model Initiative part 1 climate projection simulations, we find a remarkable agreement between most of the models in simulating the largest negative AoA trends in the extratropical lower to middle stratosphere of both hemispheres (approximately between 20 and 25 geopotential kilometers (gpkm) and 20–50∘ N and S). We show that the occurrence of AoA trend minima in those regions is directly related to the climatological AoA distribution, which is sensitive to an upward shift of the circulation in response to climate change. Also other factors like a reduction of aging by mixing (AbM) and residual circulation transit times (RCTTs) contribute to the AoA distribution changes by widening the AoA isolines. Furthermore, we analyze the time evolution of AbM and RCTT trends in the extratropics and examine the connection to possible drivers focusing on local residual circulation strength, net tropical upwelling and wave driving. However, after the correction for a vertical shift of pressure levels, we find only seasonally significant trends of residual circulation strength and zonal mean wave forcing (resolved and unresolved) without a clear relation between the trends of the analyzed quantities. This indicates that additional causative factors may influence the AoA, RCTT and AbM trends. In this study, we postulate that the shrinkage of the stratosphere has the potential to influence the RCTT and AbM trends and thereby cause additional AoA changes over time.


Sign in / Sign up

Export Citation Format

Share Document