scholarly journals Reassessment of the common concept to derive the surface cloud radiative forcing in the Arctic: Consideration of surface albedo – cloud interactions

Author(s):  
Johannes Stapf ◽  
André Ehrlich ◽  
Evelyn Jäkel ◽  
Christof Lüpkes ◽  
Manfred Wendisch

Abstract. The concept of cloud radiative forcing (CRF) is commonly used to quantify the warming or cooling effect due to clouds on the radiative energy budget (REB). In the Arctic, radiative interactions between micro- and macrophysical properties of clouds and the surface influence the CRF and complicate its estimate obtained from observations or models. In this study the individual components and processes related to the surface CRF are analysed separately using simulations and measurement from low-level airborne observations of the REB in the heterogeneous springtime marginal sea ice zone (MIZ). The measurements were obtained during the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign. The effect of changing surface albedo, due to the presence of clouds, and its dependence on cloud optical thickness was found to be relevant for the estimation of the solar CRF. A method to correct this albedo effect by retrieving the cloud-free surface albedo from observations under cloudy conditions is proposed. The application of this new concept to ACLOUD data shows, that the estimated average solar cooling effect by clouds almost doubles over snow and ice covered surfaces (−63 W m−2 instead of −33 W m−2), if surface albedo-cloud interactions are considered. Concerning the seasonal cycle of the surface albedo, this effect would potentially enhance solar cooling in periods where cold snow and ice dominate the surface and weaken the cooling by optical thin clouds and surface albedos commonly found during the summertime Arctic melting season. These findings suggest, that the surface albedo-cloud interaction needs to be represented in global climate models and in long-term observations to obtain a realistic estimate of the solar CRF and a reasonable representation of cloud radiative feedback mechanisms in the Arctic and to quantify the role of clouds in Arctic amplification.

2020 ◽  
Vol 20 (16) ◽  
pp. 9895-9914 ◽  
Author(s):  
Johannes Stapf ◽  
André Ehrlich ◽  
Evelyn Jäkel ◽  
Christof Lüpkes ◽  
Manfred Wendisch

Abstract. The concept of cloud radiative forcing (CRF) is commonly applied to quantify the impact of clouds on the surface radiative energy budget (REB). In the Arctic, specific radiative interactions between microphysical and macrophysical properties of clouds and the surface strongly modify the warming or cooling effect of clouds, complicating the estimate of CRF obtained from observations or models. Clouds tend to increase the broadband surface albedo over snow or sea ice surfaces compared to cloud-free conditions. However, this effect is not adequately considered in the derivation of CRF in the Arctic so far. Therefore, we have quantified the effects caused by surface-albedo–cloud interactions over highly reflective snow or sea ice surfaces on the CRF using radiative transfer simulations and below-cloud airborne observations above the heterogeneous springtime marginal sea ice zone (MIZ) during the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign. The impact of a modified surface albedo in the presence of clouds, as compared to cloud-free conditions, and its dependence on cloud optical thickness is found to be relevant for the estimation of the shortwave CRF. A method is proposed to consider this surface albedo effect on CRF estimates by continuously retrieving the cloud-free surface albedo from observations under cloudy conditions, using an available snow and ice albedo parameterization. Using ACLOUD data reveals that the estimated average shortwave cooling by clouds almost doubles over snow- and ice-covered surfaces (−62 W m−2 instead of −32 W m−2), if surface-albedo–cloud interactions are considered. As a result, the observed total (shortwave plus longwave) CRF shifted from a warming effect to an almost neutral one. Concerning the seasonal cycle of the surface albedo, it is demonstrated that this effect enhances shortwave cooling in periods when snow dominates the surface and potentially weakens the cooling by optically thin clouds during the summertime melting season. These findings suggest that the surface-albedo–cloud interaction should be considered in global climate models and in long-term studies to obtain a realistic estimate of the shortwave CRF to quantify the role of clouds in Arctic amplification.


2021 ◽  
Author(s):  
Johannes Stapf ◽  
André Ehrlich ◽  
Christof Lüpkes ◽  
Manfred Wendisch

Abstract. Airborne measurements of the surface radiative energy budget (REB) collected in the area of the marginal sea ice zone (MIZ) close to Svalbard (Norway) during two campaigns conducted in early spring and and early summer are presented. From the data, the cloud radiative forcing was derived. The analysis is focussed on the impact of changing atmospheric thermodynamic conditions on the REB and on the linkage of sea ice properties and cloud radiative forcing (CRF). The observed two-mode longwave net irradiance frequency distributions above sea ice are compared with measurements from previous studies. The transition of both states (cloudy and cloud-free) from winter towards summer and the associated broadening of the modes is discussed as a function of the seasonal thermodynamic profiles and the surface type. The influence of cold air outbreaks (CAO) and warm air intrusions on the REB is illustrated for several case studies, whereby the source and sink terms of REB in the evolving CAO boundary layer are quantified. Furthermore, the role of thermodynamic profiles and the vertical location of clouds during on-ice flow is illustrated. The sea ice concentration was identified as the main driver of the shortwave cooling by the clouds. The longwave warming of clouds, estimated to about 75 W m−2, seems to be representative for this region, as compared to other studies. Simplified radiative transfer simulations of the frequently observed low-level boundary layer clouds and average thermodynamic profiles represent the observed radiative quantities fairly well. The simulations illustrate the delicate interplay of surface and cloud properties that modify the REB and CRF, and the challenges in quantifying trends in the Arctic REB induced by potential changes of the cloud optical thickness.


2021 ◽  
Author(s):  
Michael Lonardi ◽  
Christian Pilz ◽  
Ulrike Egerer ◽  
André Ehrlich ◽  
Matthew D. Shupe ◽  
...  

<p>Arctic boundary layer clouds play an important role in the Arctic amplification due to their impact on the radiative energy budget, e. g., local cooling at cloud top which strongly affects boundary-layer dynamics. High resolution in-situ data characterizing the irradiance profile in clouds over the Arctic sea ice are rare due to the accessibility of this region, the challenges posed by icing and the limited resolution of airborne measurements.</p><p>The tethered balloon system BELUGA (Balloon-bornE moduLar Utility for profilinG the lower Atmosphere) was deployed from the ice camp of the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC) in July 2020. BELUGA consists of a 90 m³ helium-filled tethered balloon with maximum flight altitude of 1500 m and an adaptable scientific payload to characterize radiation, cloud, aerosol and turbulence properties which was specifically developed for Arctic tethered balloon operations.</p><p>Here a first analysis of vertical profiles of upwards and downwards solar and terrestrial irradiances in cloudy and cloud-free conditions is presented. Profiles of radiative heating were calculated and compared for different cloud covers. The case studies were evaluated by radiative transfer simulations  to quantify the impact of different cloud and atmospheric properties on the heating rate profiles. In combination with surface-based measurements, the cloud radiative forcing in the summer Arctic was assessed.</p>


2021 ◽  
Author(s):  
Sebastian Becker ◽  
Johannes Stapf ◽  
André Ehrlich ◽  
Michael Schäfer ◽  
Manfred Wendisch

<p>Clouds can cause a significant change to the radiative energy budget of the Earth's surface compared to clear-sky conditions, which is referred to as surface cloud radiative forcing (CRF). The CRF in the Arctic strongly depends on the surface properties (absorbing open ocean vs. strongly reflecting sea ice) and is affected by the low or even absent sun and the special thermodynamic conditions. Therefore, in contrast to the mid and low latitudes, in the Arctic, clouds mostly warm the surface on annual average. However, the CRF will change as the sea ice retreats in a warming climate, which might be accelerated due to the enhanced warming of the Arctic, known as Arctic Amplification. Thus, to quantify the contrast of the CRF over sea ice-covered and sea ice-free ocean surfaces, several airborne campaigns have been conducted in the vicinity of Svalbard in the recent years. The measurements of cloud macrophysical and microphysical properties as well as radiative and turbulent fluxes cover different seasons (spring to early autumn).</p><p>Airborne broadband radiation measurements under all-sky conditions were used to calculate the surface CRF during low-level flight sections. In this study, observations from the concurrent campaigns Multidisciplinary drifting Observatory for the Study of Arctic Climate – Airborne observations in the Central Arctic (MOSAiC-ACA) and MOSAiC-Icebird, conducted in August/September 2020, are presented. First results of the CRF over open ocean and the marginal sea ice zone (MIZ) of late summer/early autumn conditions are assessed and compared to the previous airborne spring and early summer campaigns to analyse the seasonal variability of the CRF.</p>


2006 ◽  
Vol 19 (17) ◽  
pp. 4344-4359 ◽  
Author(s):  
Markus Stowasser ◽  
Kevin Hamilton

Abstract The relations between local monthly mean shortwave cloud radiative forcing and aspects of the resolved-scale meteorological fields are investigated in hindcast simulations performed with 12 of the global coupled models included in the model intercomparison conducted as part of the preparation for Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). In particular, the connection of the cloud forcing over tropical and subtropical ocean areas with resolved midtropospheric vertical velocity and with lower-level relative humidity are investigated and compared among the models. The model results are also compared with observational determinations of the same relationships using satellite data for the cloud forcing and global reanalysis products for the vertical velocity and humidity fields. In the analysis the geographical variability in the long-term mean among all grid points and the interannual variability of the monthly mean at each grid point are considered separately. The shortwave cloud radiative feedback (SWCRF) plays a crucial role in determining the predicted response to large-scale climate forcing (such as from increased greenhouse gas concentrations), and it is thus important to test how the cloud representations in current climate models respond to unforced variability. Overall there is considerable variation among the results for the various models, and all models show some substantial differences from the comparable observed results. The most notable deficiency is a weak representation of the cloud radiative response to variations in vertical velocity in cases of strong ascending or strong descending motions. While the models generally perform better in regimes with only modest upward or downward motions, even in these regimes there is considerable variation among the models in the dependence of SWCRF on vertical velocity. The largest differences between models and observations when SWCRF values are stratified by relative humidity are found in either very moist or very dry regimes. Thus, the largest errors in the model simulations of cloud forcing are prone to be in the western Pacific warm pool area, which is characterized by very moist strong upward currents, and in the rather dry regions where the flow is dominated by descending mean motions.


2014 ◽  
Vol 8 (1) ◽  
pp. 1383-1406 ◽  
Author(s):  
P. J. Hezel ◽  
T. Fichefet ◽  
F. Massonnet

Abstract. Almost all global climate models and Earth system models that participated in the Coupled Model Intercomparison Project 5 (CMIP5) show strong declines in Arctic sea ice extent and volume under the highest forcing scenario of the Radiative Concentration Pathways (RCPs) through 2100, including a transition from perennial to seasonal ice cover. Extended RCP simulations through 2300 were completed for a~subset of models, and here we examine the time evolution of Arctic sea ice in these simulations. In RCP2.6, the summer Arctic sea ice extent increases compared to its minimum following the peak radiative forcing in 2044 in all 9 models. RCP4.5 demonstrates continued summer Arctic sea ice decline due to continued warming on longer time scales. These two scenarios imply that summer sea ice extent could begin to recover if and when radiative forcing from greenhouse gas concentrations were to decrease. In RCP8.5 the Arctic Ocean reaches annually ice-free conditions in 7 of 9 models. The ensemble of simulations completed under the extended RCPs provide insight into the global temperature increase at which sea ice disappears in the Arctic and reversibility of declines in seasonal sea ice extent.


2021 ◽  
Author(s):  
Arshad Nair ◽  
Fangqun Yu ◽  
Pedro Campuzano Jost ◽  
Paul DeMott ◽  
Ezra Levin ◽  
...  

Abstract Cloud condensation nuclei (CCN) are mediators of aerosol–cloud interactions, which contribute to the largest uncertainty in climate change prediction. Here, we present a machine learning/artificial intelligence model that quantifies CCN from variables of aerosol composition, atmospheric trace gases, and meteorology. Comprehensive multi-campaign airborne measurements, covering varied physicochemical regimes in the troposphere, confirm the validity of and help probe the inner workings of this machine learning model: revealing for the first time that different ranges of atmospheric aerosol composition and mass correspond to distinct aerosol number size distributions. Machine learning extracts this information, important for accurate quantification of CCN, additionally from both chemistry and meteorology. This can provide a physicochemically explainable, computationally efficient, robust machine learning pathway in global climate models that only resolve aerosol composition; potentially mitigating the uncertainty of effective radiative forcing due to aerosol–cloud interactions (ERFaci) and improving confidence in assessment of anthropogenic contributions and climate change projections.


2021 ◽  
Author(s):  
Filippo Calì Quaglia ◽  
Daniela Meloni ◽  
Alcide Giorgio di Sarra ◽  
Tatiana Di Iorio ◽  
Virginia Ciardini ◽  
...  

<p>Extended and intense wildfires occurred in Northern Canada and, unexpectedly, on the Greenlandic West coast during summer 2017. The thick smoke plume emitted into the atmosphere was transported to the high Arctic, producing one of the largest impacts ever observed in the region. Evidence of Canadian and Greenlandic wildfires was recorded at the Thule High Arctic Atmospheric Observatory (THAAO, 76.5°N, 68.8°W, www.thuleatmos-it.it) by a suite of instruments managed by ENEA, INGV, Univ. of Florence, and NCAR. Ground-based observations of the radiation budget have allowed quantification of the surface radiative forcing at THAAO. </p><p>Excess biomass burning chemical tracers such as CO, HCN, H2CO, C2H6, and NH3 were  measured in the air column above Thule starting from August 19 until August 23. The aerosol optical depth (AOD) reached a peak value of about 0.9 on August 21, while an enhancement of wildfire compounds was  detected in PM10. The measured shortwave radiative forcing was -36.7 W/m2 at 78° solar zenith angle (SZA) for AOD=0.626.</p><p>MODTRAN6.0 radiative transfer model (Berk et al., 2014) was used to estimate the aerosol radiative effect and the heating rate profiles at 78° SZA. Measured temperature profiles, integrated water vapour, surface albedo, spectral AOD and aerosol extinction profiles from CALIOP onboard CALIPSO were used as model input. The peak  aerosol heating rate (+0.5 K/day) was  reached within the aerosol layer between 8 and 12 km, while the maximum radiative effect (-45.4 W/m2) is found at 3 km, below the largest aerosol layer.</p><p>The regional impact of the event that occurred on August 21 was investigated using a combination of atmospheric radiative transfer modelling with measurements of AOD and ground surface albedo from MODIS. The aerosol properties used in the radiative transfer model were constrained by in situ measurements from THAAO. Albedo data over the ocean have been obtained from Jin et al. (2004). Backward trajectories produced through HYSPLIT simulations (Stein et al., 2015) were also employed to trace biomass burning plumes.</p><p>The radiative forcing efficiency (RFE) over land and ocean was derived, finding values spanning from -3 W/m2 to -132 W/m2, depending on surface albedo and solar zenith angle. The fire plume covered a vast portion of the Arctic, with large values of the daily shortwave RF (< -50 W/m2) lasting for a few days. This large amount of aerosol is expected to influence cloud properties in the Arctic, producing significant indirect radiative effects.</p>


Sign in / Sign up

Export Citation Format

Share Document