scholarly journals Modeling global radiative effect of brown carbon: A larger heating source in the tropical free troposphere than black carbon

Author(s):  
Aoxing Zhang ◽  
Yuhang Wang ◽  
Yuzhong Zhang ◽  
Rodney J. Weber ◽  
Yongjia Song ◽  
...  

Abstract. Carbonaceous aerosols significantly affect global radiative forcing and climate through absorption and scattering of sunlight. Black carbon (BC) and brown carbon (BrC) are light-absorbing carbonaceous aerosols. The direct radiative effect (DRE) of BrC is uncertain. A recent study suggests that BrC absorption is comparable to BC in the upper troposphere over biomass burning regions and that the resulting radiative heating tends to stabilize the atmosphere. Yet current climate models do not include proper physical and chemical treatments of BrC. In this study, we derived a BrC global biomass burning emission inventory on the basis of the Global Fire Emissions Database 4 (GFED4), developed a BrC module in the Community Atmosphere Model version 5 (CAM5) of Community Earth System Model (CESM) model, and investigated the photo-bleaching effect and convective transport of BrC on the basis of Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and Deep Convective Clouds and Chemistry Project (DC-3) measurements. The model simulations of BC were also evaluated using HIAPER (High-Performance Instrumented Airborne Platform for Environmental Research) Pole-to-Pole Observations (HIPPO) measurements. We found that globally BrC is a significant absorber, the DRE of which is 0.10 W/m2, more than 25 % of BC DRE (+0.39 W/m2). Most significantly, model results indicated that BrC atmospheric heating in the tropical mid and upper troposphere is larger than that of BC. The source of tropical BrC is mainly from wildfires, which are more prevalent in the tropical regions than higher latitudes and release much more BrC relative to BC than industrial sources. While BC atmospheric heating is skewed towards northern mid-latitude lower atmosphere, BrC heating is more centered in the tropical free troposphere. The contribution of BrC heating to the Hadley circulation and latitudinal expansion of the tropics is comparable to BC heating.

2020 ◽  
Vol 20 (4) ◽  
pp. 1901-1920 ◽  
Author(s):  
Aoxing Zhang ◽  
Yuhang Wang ◽  
Yuzhong Zhang ◽  
Rodney J. Weber ◽  
Yongjia Song ◽  
...  

Abstract. Carbonaceous aerosols significantly affect global radiative forcing and climate through absorption and the scattering of sunlight. Black carbon (BC) and brown carbon (BrC) are light-absorbing carbonaceous aerosols. The direct radiative effect (DRE) of BrC is uncertain. A recent study suggests that BrC absorption is comparable to BC in the upper troposphere over biomass burning regions and that the resulting radiative heating tends to stabilize the atmosphere. Yet current climate models do not include proper physical and chemical treatments of BrC. In this study, we derived a BrC global biomass burning emission inventory on the basis of the Global Fire Emissions Database version 4 (GFED4), developed a module to simulate the light absorption of BrC in the Community Atmosphere Model version 5 (CAM5) of the Community Earth System Model (CESM), and investigated the photobleaching effect and convective transport of BrC on the basis of Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and Deep Convective Clouds and Chemistry Project (DC3) measurements. The model simulations of BC were also evaluated using HIAPER (High-Performance Instrumented Airborne Platform for Environmental Research) Pole-to-Pole Observations (HIPPO) measurements. We found that globally BrC is a significant absorber, the DRE of which is 0.10 W m−2, more than 25 % of BC DRE (+0.39 W m−2). Most significantly, model results indicated that BrC atmospheric heating in the tropical mid and upper troposphere is larger than that of BC. The source of tropical BrC is mainly from wildfires, which are more prevalent in the tropical regions than higher latitudes and release much more BrC relative to BC than industrial sources. While BC atmospheric heating is skewed towards the northern mid-latitude lower atmosphere, BrC heating is more centered in the tropical free troposphere. A possible mechanism for the enhanced convective transport of BrC is that hydrophobic high molecular weight BrC becomes a larger fraction of the BrC and less easily activated in a cloud as the aerosol ages. The contribution of BrC heating to the Hadley circulation and latitudinal expansion of the tropics is likely comparable to BC heating.


Author(s):  
Rawad Saleh ◽  
Marguerite Marks ◽  
Jinhyok Heo ◽  
Peter J. Adams ◽  
Neil M. Donahue ◽  
...  

2015 ◽  
Vol 15 (20) ◽  
pp. 11537-11555 ◽  
Author(s):  
D. Liu ◽  
B. Quennehen ◽  
E. Darbyshire ◽  
J. D. Allan ◽  
P. I. Williams ◽  
...  

Abstract. Black carbon aerosol (BC) deposited to the Arctic sea ice or present in the free troposphere can significantly affect the Earth's radiation budget at high latitudes yet the BC burden in these regions and the regional source contributions are poorly constrained. Aircraft measurements of aerosol composition in the European Arctic were conducted during the Aerosol–Cloud Coupling And Climate Interactions in the Arctic (ACCACIA) campaign in March 2013. Pollutant plumes were encountered throughout the lower to upper Arctic troposphere featuring enhancements in CO and aerosol mass loadings, which were chemically speciated into BC and non-refractory sulphate and organic matter. FLEXPART-WRF simulations have been performed to evaluate the likely contribution to the pollutants from regional ground sources. By combining up-to-date anthropogenic and open fire biomass burning (OBB) inventories, we have been able to compare the contributions made to the observed pollution layers from the sources of eastern/northern Asia (AS), Europe (EU) and North America (NA). Over 90 % of the contribution to the BC was shown to arise from non-OBB anthropogenic sources. AS sources were found to be the major contributor to the BC burden, increasing background BC loadings by a factor of 3–5 to 100.8 ± 48.4 ng sm−3 (in standard air m3 at 273.15 K and 1013.25 mbar) and 55.8 ± 22.4 ng sm−3 in the middle and upper troposphere respectively. AS plumes close to the tropopause (about 7.5–8 km) were also observed, with BC concentrations ranging from 55 to 73 ng sm−3, which will potentially have a significant radiative impact. EU sources influenced the middle troposphere with a BC mean concentration of 70.8 ± 39.1 ng sm−3 but made a minor contribution to the upper troposphere due to the relatively high latitude of the source region. The contribution of NA was shown to be much lower at all altitudes with BC mean concentration of 20 ng sm−3. The BC transported to the Arctic is mixed with a non-BC volume fraction representing between 90–95 % of the mass, and has a relatively uniform core size distribution with mass median diameter 190–210 nm and geometric standard deviation σg = 1.55–1.65 and this varied little across all source regions. It is estimated that 60–95 % of BC is scavenged between emission and receptor based on BC / ΔCO comparisons between source inventories and measurement. We show that during the springtime of 2013, the anthropogenic pollution particularly from sources in Asia, contributed significantly to BC across the European Arctic free troposphere. In contrast to previous studies, the contribution from open wildfires was minimal. Given that Asian pollution is likely to continue to rise over the coming years, it is likely that the radiative forcing in the Arctic will also continue to increase.


2019 ◽  
Vol 19 (17) ◽  
pp. 11213-11233 ◽  
Author(s):  
Xiaoyan Liu ◽  
Yan-Lin Zhang ◽  
Yiran Peng ◽  
Lulu Xu ◽  
Chunmao Zhu ◽  
...  

Abstract. Biomass burning can significantly impact the chemical and optical properties of carbonaceous aerosols. Here, the biomass burning impacts were studied during wintertime in a megacity of Nanjing, eastern China. The high abundance of biomass burning tracers such as levoglucosan (lev), mannosan (man), galactosan (gal) and non-sea-salt potassium (nss-K+) was found during the studied period with the concentration ranges of 22.4–1476 ng m−3, 2.1–56.2 ng m−3, 1.4–32.2 ng m−3 and 0.2–3.8 µg m−3, respectively. The significant contribution of biomass burning to water-soluble organic carbon (WSOC; 22.3±9.9 %) and organic carbon (OC; 20.9±9.3 %) was observed in this study. Backward air mass origin analysis, potential emission sensitivity of elemental carbon (EC) and MODIS fire spot information indicated that the elevations of the carbonaceous aerosols were due to the transported biomass-burning aerosols from southeastern China. The characteristic mass ratio maps of lev∕man and lev∕nss-K+ suggested that the biomass fuels were mainly crop residuals. Furthermore, the strong correlation (p < 0.01) between biomass burning tracers (such as lev) and light absorption coefficient (babs) for water-soluble brown carbon (BrC) revealed that biomass burning emissions played a significant role in the light-absorption properties of carbonaceous aerosols. The solar energy absorption due to water-soluble brown carbon and EC was estimated by a calculation based on measured light-absorbing parameters and a simulation based on a radiative transfer model (RRTMG_SW). The solar energy absorption of water-soluble BrC in short wavelengths (300–400 nm) was 0.8±0.4 (0.2–2.3) W m−2 (figures in parentheses represent the variation range of each parameter) from the calculation and 1.2±0.5 (0.3–1.9) W m−2 from the RRTMG_SW model. The absorption capacity of water-soluble BrC accounted for about 20 %–30 % of the total absorption of EC aerosols. The solar energy absorption of water-soluble BrC due to biomass burning was estimated as 0.2±0.1 (0.0–0.9) W m−2, considering the biomass burning contribution to carbonaceous aerosols. Potential source contribution function model simulations showed that the solar energy absorption induced by water-soluble BrC and EC aerosols was mostly due to the regionally transported carbonaceous aerosols from source regions such as southeastern China. Our results illustrate the importance of the absorbing water-soluble brown carbon aerosols in trapping additional solar energy in the low-level atmosphere, heating the surface and inhibiting the energy from escaping the atmosphere.


2016 ◽  
Vol 16 (15) ◽  
pp. 9549-9561 ◽  
Author(s):  
Rudra P. Pokhrel ◽  
Nick L. Wagner ◽  
Justin M. Langridge ◽  
Daniel A. Lack ◽  
Thilina Jayarathne ◽  
...  

Abstract. Single-scattering albedo (SSA) and absorption Ångström exponent (AAE) are two critical parameters in determining the impact of absorbing aerosol on the Earth's radiative balance. Aerosol emitted by biomass burning represent a significant fraction of absorbing aerosol globally, but it remains difficult to accurately predict SSA and AAE for biomass burning aerosol. Black carbon (BC), brown carbon (BrC), and non-absorbing coatings all make substantial contributions to the absorption coefficient of biomass burning aerosol. SSA and AAE cannot be directly predicted based on fuel type because they depend strongly on burn conditions. It has been suggested that SSA can be effectively parameterized via the modified combustion efficiency (MCE) of a biomass burning event and that this would be useful because emission factors for CO and CO2, from which MCE can be calculated, are available for a large number of fuels. Here we demonstrate, with data from the FLAME-4 experiment, that for a wide variety of globally relevant biomass fuels, over a range of combustion conditions, parameterizations of SSA and AAE based on the elemental carbon (EC) to organic carbon (OC) mass ratio are quantitatively superior to parameterizations based on MCE. We show that the EC ∕ OC ratio and the ratio of EC ∕ (EC + OC) both have significantly better correlations with SSA than MCE. Furthermore, the relationship of EC ∕ (EC + OC) with SSA is linear. These improved parameterizations are significant because, similar to MCE, emission factors for EC (or black carbon) and OC are available for a wide range of biomass fuels. Fitting SSA with MCE yields correlation coefficients (Pearson's r) of  ∼  0.65 at the visible wavelengths of 405, 532, and 660 nm while fitting SSA with EC / OC or EC / (EC + OC) yields a Pearson's r of 0.94–0.97 at these same wavelengths. The strong correlation coefficient at 405 nm (r =  0.97) suggests that parameterizations based on EC / OC or EC / (EC + OC) have good predictive capabilities even for fuels in which brown carbon absorption is significant. Notably, these parameterizations are effective for emissions from Indonesian peat, which have very little black carbon but significant brown carbon (SSA  =  0.990 ± 0.001 at 532 and 660 nm, SSA  =  0.937 ± 0.011 at 405 nm). Finally, we demonstrate that our parameterization based on EC / (EC + OC) accurately predicts SSA during the first few hours of plume aging with data from Yokelson et al. (2009) gathered during a biomass burning event in the Yucatán Peninsula of Mexico.


2020 ◽  
Author(s):  
HuiHui Wu ◽  
Jonathan Taylor ◽  
Justin Langridge ◽  
Chenjie Yu ◽  
Paul Williams ◽  
...  

&lt;p&gt;The biomass burning over West Africa during the dry season (December &amp;#8211; February) is a globally significant source of trace gases and carbonaceous aerosol particles in the atmosphere. The MOYA-2017 (Methane Observations Yearly Assessments 2017) campaign were conducted using the UK FAAM Bae-146 airborne research aircraft, to investigate biomass burning emissions in this region. Research sorties were flown out of Senegal, with some flights directly over terrestrial fires and others sampling transported smokes over the Atlantic ocean.&lt;/p&gt;&lt;p&gt;The aircraft was equipped with a variety of aerosol-related instruments to measure submicron aerosol chemical properties (aerosol mass spectrometer, AMS and single-particle soot photometer, SP2) and absorption at different wavelengths (Photoacoustic spectrometer, PAS, measure at 405, 514 and 658 nm). In this study, we focus on the aging process of ambient black carbon (BC) and brown carbon (BrC) from biomass burning, in time scale from (&lt;0.5) h to (9 &amp;#8211; 15) h. The transport age of smokes was estimated using Met Office's Numerical Atmospheric-dispersion Modelling Environment (NAME).&lt;/p&gt;&lt;p&gt;The sampled smokes during MOYA-2017 were controlled by flaming-phase combustion. The enhancement ratios of BC with respect to CO ranged from 14 to 26 (ng m&lt;sup&gt;&amp;#8211;3&lt;/sup&gt; / ppbv) at sources. Our measurements show that count and mass median diameters of BC core size were relatively stable, which were around 106 and 190 nm respectively. Average BC coating thickness increased from (1.16 &amp;#177; 0.03) to (1.71 &amp;#177; 0.06) after approximately half-day transport. Average absorption angstrom exponents (AAE&lt;sub&gt;405-658&lt;/sub&gt;) increased from (1.1 &amp;#177; 0.1) to (1.8 &amp;#177; 0.3), suggesting that BrC contributed little in the very freshly emitted aerosols (&lt;0.5 h) and were formed during aging process. In order to investigate the importance of BrC in this area, we also attributed the measured aerosol absorption into BC and BrC separately. By linking AAE&lt;sub&gt;405-658&lt;/sub&gt; with organic (OA) composition measured by the AMS, we found that the increasing AAE&lt;sub&gt;405-658&lt;/sub&gt; is positively correlated with O/C ratio (oxygenation) of the OA. These data indicate that BrC in smokes controlled by flaming combustion is likely to be from the condensation of semi-volatile OA during cooling stage of smokes, and from the aged primary OA or secondary OA formation.&lt;/p&gt;


2017 ◽  
Vol 17 (18) ◽  
pp. 11637-11654 ◽  
Author(s):  
Suvarna Fadnavis ◽  
Gayatry Kalita ◽  
K. Ravi Kumar ◽  
Blaž Gasparini ◽  
Jui-Lin Frank Li

Abstract. Recent satellite observations show efficient vertical transport of Asian pollutants from the surface to the upper-level anticyclone by deep monsoon convection. In this paper, we examine the transport of carbonaceous aerosols, including black carbon (BC) and organic carbon (OC), into the monsoon anticyclone using of ECHAM6-HAM, a global aerosol climate model. Further, we investigate impacts of enhanced (doubled) carbonaceous aerosol emissions on the upper troposphere and lower stratosphere (UTLS), underneath monsoon circulation and precipitation from sensitivity simulations. The model simulation shows that boundary layer aerosols are transported into the monsoon anticyclone by the strong monsoon convection from the Bay of Bengal, southern slopes of the Himalayas and the South China Sea. Doubling of emissions of both BC and OC aerosols over Southeast Asia (10° S–50° N, 65–155° E) shows that lofted aerosols produce significant warming (0.6–1 K) over the Tibetan Plateau (TP) near 400–200 hPa and instability in the middle/upper troposphere. These aerosols enhance radiative heating rates (0.02–0.03 K day−1) near the tropopause. The enhanced carbonaceous aerosols alter aerosol radiative forcing (RF) at the surface by −4.74 ± 1.42 W m−2, at the top of the atmosphere (TOA) by +0.37 ± 0.26 W m−2 and in the atmosphere by +5.11 ± 0.83 W m−2 over the TP and Indo-Gangetic Plain region (15–35° N, 80–110° E). Atmospheric warming increases vertical velocities and thereby cloud ice in the upper troposphere. Aerosol induced anomalous warming over the TP facilitates the relative strengthening of the monsoon Hadley circulation and increases moisture inflow by strengthening the cross-equatorial monsoon jet. This increases precipitation amounts over India (1–4 mm day−1) and eastern China (0.2–2 mm day−1). These results are significant at the 99 % confidence level.


2015 ◽  
Vol 15 (22) ◽  
pp. 12731-12740 ◽  
Author(s):  
A. Arola ◽  
G. L. Schuster ◽  
M. R. A. Pitkänen ◽  
O. Dubovik ◽  
H. Kokkola ◽  
...  

Abstract. The importance of light-absorbing organic aerosols, often called brown carbon (BrC), has become evident in recent years. However, there have been relatively few measurement-based estimates for the direct radiative effect of BrC so far. In earlier studies, the AErosol RObotic NETwork (AERONET)-measured aerosol absorption optical depth (AAOD) and absorption Angstrom exponent (AAE) were exploited. However, these two pieces of information are clearly not sufficient to separate properly carbonaceous aerosols from dust, while imaginary indices of refraction would contain more and better justified information for this purpose. This is first time that the direct radiative effect (DRE) of BrC is estimated by exploiting the AERONET-retrieved imaginary indices. We estimated it for four sites in the Indo-Gangetic Plain (IGP), Karachi, Lahore, Kanpur and Gandhi College. We found a distinct seasonality, which was generally similar among all the sites, but with slightly different strengths. The monthly warming effect up to 0.5 W m−2 takes place during the spring season. On the other hand, BrC results in an overall cooling effect in the winter season, which can reach levels close to −1 W m−2. We then estimated similarly also the DRE of black carbon and total aerosol, in order to assess the relative significance of the BrC radiative effect in the radiative effects of other components. Even though BrC impact seems minor in this context, we demonstrated that it is not insignificant. Moreover, we demonstrated that it is crucial to perform spectrally resolved radiative transfer calculations to obtain good estimates for the DRE of BrC.


Sign in / Sign up

Export Citation Format

Share Document