scholarly journals Review of “Simulated coordinated impacts of the NAO and El Nino on aerosol concentrations over eastern China”

2019 ◽  
Author(s):  
Anonymous
Keyword(s):  
El Niño ◽  
El Nino ◽  
2018 ◽  
Vol 137 (1-2) ◽  
pp. 217-227 ◽  
Author(s):  
Zhixin Hao ◽  
Di Sun ◽  
Maowei Wu ◽  
Jingyun Zheng

2019 ◽  
Vol 19 (16) ◽  
pp. 10787-10800 ◽  
Author(s):  
Juan Feng ◽  
Jianping Li ◽  
Hong Liao ◽  
Jianlei Zhu

Abstract. The high aerosol concentration (AC) over eastern China has attracted attention from both science and society. Based on the simulations of a chemical transport model using a fixed emissions level, the possible impact of the previous autumn North Atlantic Oscillation (NAO) combined with the simultaneous El Niño–Southern Oscillation (ENSO) on the boreal winter AC over eastern China is investigated. We find that the NAO only manifests its negative impacts on the AC during its negative phase over central China, and a significant positive influence on the distribution of AC is observed over south China only during the warm events of ENSO. The impact of the previous NAO on the AC occurs via an anomalous sea surface temperature tripole pattern by which a teleconnection wave train is induced that results in anomalous convergence over central China. In contrast, the occurrence of ENSO events may induce an anomalous shift in the western Pacific subtropical high and result in anomalous southwesterlies over south China. The anomalous circulations associated with a negative NAO and El Niño are not favorable for the transport of AC and correspond to worsening air conditions over central and south China. The results highlight the fact that the combined effects of tropical and extratropical systems play a considerable role in affecting the boreal winter AC over eastern China.


2014 ◽  
Vol 10 (5) ◽  
pp. 1803-1816 ◽  
Author(s):  
J.-J. Yin ◽  
D.-X. Yuan ◽  
H.-C. Li ◽  
H. Cheng ◽  
T.-Y. Li ◽  
...  

Abstract. This paper focuses on the climate variability in central China since AD 1300, involving: (1) a well-dated, 1.5-year resolution stalagmite δ18O record from Lianhua Cave, central China (2) links of the δ18O record with regional dry–wet conditions, monsoon intensity, and temperature over eastern China (3) correlations among drought events in the Lianhua record, solar irradiation, and ENSO (El Niño–Southern Oscillation) variation. We present a highly precise, 230Th / U-dated, 1.5-year resolution δ18O record of an aragonite stalagmite (LHD1) collected from Lianhua Cave in the Wuling Mountain area of central China. The comparison of the δ18O record with the local instrumental record and historical documents indicates that (1) the stalagmite δ18O record reveals variations in the summer monsoon intensity and dry–wet conditions in the Wuling Mountain area. (2) A stronger East Asian summer monsoon (EASM) enhances the tropical monsoon trough controlled by ITCZ (Intertropical Convergence Zone), which produces higher spring quarter rainfall and isotopically light monsoonal moisture in the central China. (3) The summer quarter/spring quarter rainfall ratio in central China can be a potential indicator of the EASM strength: a lower ratio corresponds to stronger EASM and higher spring rainfall. The ratio changed from <1 to >1 after 1950, reflecting that the summer quarter rainfall of the study area became dominant under stronger influence of the Northwestern Pacific High. Eastern China temperatures varied with the solar activity, showing higher temperatures under stronger solar irradiation, which produced stronger summer monsoons. During Maunder, Dalton and 1900 sunspot minima, more severe drought events occurred, indicating a weakening of the summer monsoon when solar activity decreased on decadal timescales. On an interannual timescale, dry conditions in the study area prevailed under El Niño conditions, which is also supported by the spectrum analysis. Hence, our record illustrates the linkage of Asian summer monsoon precipitation to solar irradiation and ENSO: wetter conditions in the study area under stronger summer monsoon during warm periods, and vice versa. During cold periods, the Walker Circulation will shift toward the central Pacific under El Niño conditions, resulting in a further weakening of Asian summer monsoons.


2014 ◽  
Vol 27 (23) ◽  
pp. 8778-8792 ◽  
Author(s):  
Xiuzhen Li ◽  
Wen Zhou ◽  
Deliang Chen ◽  
Chongyin Li ◽  
Jie Song

Abstract The water vapor transport and moisture budget over eastern China remotely forced by the cold-tongue (CT) and warm-pool (WP) El Niño show striking differences throughout their lifetime. The water vapor transport response is weak in the developing summer but strong in the remaining phases of CT El Niño, whereas the opposite occurs during WP El Niño. WP El Niño causes a moisture deficit over the Yangtze River valley (YZ) in the developing summer and over southeastern China (SE) in the developing fall, whereas CT El Niño induces a moisture surplus first over SE during the developing fall with the influential area expanding in the decaying spring and shifting northward in the decaying summer. It is the divergence of meridional water vapor transport that dominates the total water vapor divergence anomaly, with the divergence of zonal transport showing an opposite pattern with smaller magnitude. Investigation of the vertical profile of moisture budget shows a great baroclinicity, with the strongest abnormal moisture budget occurring in different levels. The moisture transport via the southern boundary plays a crucial role in the regional moisture budget anomalies and is located near the surface over SE, in the lower troposphere over the YZ, and at the lower-middle troposphere over the eastern part of northern China. The enhanced moisture surplus near the surface forced by WP El Niño over SE in the mature winter and decaying spring is offset by a moisture deficit within the lower-middle troposphere due to a diverse response circulation at different vertical levels.


2017 ◽  
Author(s):  
Shuyun Zhao ◽  
Hua Zhang ◽  
Bing Xie

Abstract. It is reported in previous studies that El Niño-South Oscillation (ENSO) influences not only the summer monsoon, but also the winter monsoon over East Asia. This contains some clues that ENSO may affect the winter haze pollution of China, which has become a serious problem in recent decades, through influencing the winter climate of East Asia. In this work, we explore the effects of ENSO on the winter (from December to February) haze pollution of China statistically and numerically. Statistical results reveal that the haze days of southern China tend to be less (more) than normal in El Niño (La Niña) winter; whereas the winter haze days of northern and eastern China have no significant relationship with ENSO. Results from numerical simulations show that under the emission level of aerosols for the year 2010, the winter-average atmospheric contents of anthropogenic aerosols over southern China are generally more (less) than normal in El Niño (La Niña) winter. It is because that the transports of aerosols from South and Southeast Asia to southern China are enhanced (weakened), which mask the better (worse) scavenging conditions for aerosols in El Niño (La Niña) winter. The probability density function (PDF) of the simulated daily surface concentrations of aerosols over southern China indicates that the region tends to have less clean and moderate (heavy) haze days, but more heavy (moderate) haze days in El Niño (La Niña) winter.


2017 ◽  
Vol 30 (24) ◽  
pp. 10037-10045 ◽  
Author(s):  
Kaiming Hu ◽  
Shang-Ping Xie ◽  
Gang Huang

Year-to-year variations in summer precipitation have great socioeconomic impacts on China. Historical rainfall variability over China is investigated using a newly released high-resolution dataset. The results reveal summer-mean rainfall anomalies associated with ENSO that are anchored by mountains in central China east of the Tibetan Plateau. These orographically anchored hot spots of ENSO influence are poorly represented in coarse-resolution datasets so far in use. In post–El Niño summers, an anomalous anticyclone forms over the tropical northwest Pacific, and the anomalous southwesterlies on the northwest flank cause rainfall to increase in mountainous central China through orographic lift. At upper levels, the winds induce additional adiabatic updraft by increasing the eastward advection of warm air from Tibet. In post–El Niño summers, large-scale moisture convergence induces rainfall anomalies elsewhere over flat eastern China, which move northward from June to August and amount to little in the seasonal mean.


2019 ◽  
Vol 92 (1) ◽  
pp. 98-108 ◽  
Author(s):  
Mark Constantine ◽  
Minkoo Kim ◽  
Jungjae Park

AbstractWe present a multiproxy record using pollen, magnetic susceptibility, carbon isotopic composition, carbon/nitrogen ratio, and particle size of mid- to late Holocene environmental changes based on a sediment core from the Pomaeho lagoon on the east coast of Korea. The records indicate that climate deteriorations around 6400 cal yr BP and 4000 cal yr BP caused rapid vegetation changes in the study area, which were presumably attributable to low sunspot activity and strong El Niño–like conditions, respectively. These two cooling events were likely modulated by different climate mechanisms, as El Niño–Southern Oscillation activity began to strengthen around 5000 cal yr BP. These events may have had a substantial impact on ancient societies in the study area. Combining our results with archaeological findings indicated that climate deterioration led to drastic declines in local populations around 6400 cal yr BP, 4400 cal yr BP, and 4000 cal yr BP. Because of its high population, coastal East Asia (e.g., eastern China, Japan, and Korea) is particularly vulnerable to potential cooling events in the future. Therefore, there is a strong need for detailed paleoclimate information in this region.


Sign in / Sign up

Export Citation Format

Share Document