scholarly journals The characteristics of atmospheric brown carbon in Xi'an, inland China: sources, size distributions and optical properties

2019 ◽  
Author(s):  
Can Wu ◽  
Gehui Wang ◽  
Jin Li ◽  
Jianjun Li ◽  
Cong Cao ◽  
...  

Abstract. To investigate the characteristic of atmospheric brown carbon (BrC) in the semi-arid region of East Asia, PM2.5 and size-resolved particles in the urban atmosphere of Xi'an, inland China during the winter and summer of 2017 were collected and analyzed for optical properties and chemical compositions. Methanol extracts (MeOH-extracts) were more light-absorbing than water extracts (H2O- extracts) in the optical wavelength of 300–600 nm, and well correlated with nitrophenols, polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (R2 > 0.6). The light absorptions (absλ=365nm) of H2O- extracts and MeOH-extracts in winter were 28 ± 16 M/m and 49 ± 32 M/m, respectively, which are about 10 times higher than those in summer, mainly due to the enhanced emissions from biomass burning for house heating. Water extracted BrC predominately occurred in the fine mode (

2020 ◽  
Vol 20 (4) ◽  
pp. 2017-2030 ◽  
Author(s):  
Can Wu ◽  
Gehui Wang ◽  
Jin Li ◽  
Jianjun Li ◽  
Cong Cao ◽  
...  

Abstract. To investigate the characteristics of atmospheric brown carbon (BrC) in the semiarid region of East Asia, PM2.5 and size-resolved particles in the urban atmosphere of Xi'an, inland China, during the winter and summer of 2017 were collected and analyzed for optical properties and chemical compositions. Methanol extracts (MeOH extracts) were more light-absorbing than water extracts (H2O extracts) in the optical wavelength of 300–600 nm and well correlated with nitrophenols, polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (r > 0.78). The light absorptions (absλ=365 nm) of H2O extracts and MeOH extracts in winter were 28±16 and 49±32 M m−1, respectively, which are about 10 times higher than those in summer, mainly due to the enhanced emissions from biomass burning for house heating. Water-extracted BrC predominately occurred in the fine mode (< 2.1 µm) during winter and summer, accounting for 81 % and 65 % of the total absorption of BrC, respectively. The light absorption and stable carbon isotope composition measurements showed an increasing ratio of absλ=365 nm-MeOH to absλ=550 nm-EC along with an enrichment of 13C in PM2.5 during the haze development, indicating an accumulation of secondarily formed BrC (e.g., nitrophenols) in the aerosol aging process. Positive matrix factorization (PMF) analysis showed that biomass burning, fossil fuel combustion, secondary formation, and fugitive dust are the major sources of BrC in the city, accounting for 55 %, 19 %, 16 %, and 10 % of the total BrC of PM2.5, respectively.


2022 ◽  
Author(s):  
Junjun Deng ◽  
Hao Ma ◽  
Xinfeng Wang ◽  
Shujun Zhong ◽  
Zhimin Zhang ◽  
...  

Abstract. Brown carbon (BrC) aerosols exert vital impacts on climate change and atmospheric photochemistry due to their light absorption in the wavelength range from near-ultraviolet (UV) to visible light. However, the optical properties and formation mechanisms of ambient BrC remain poorly understood, limiting the estimation of their radiative forcing. In the present study, fine aerosols (PM2.5) were collected during 2016–2017 on a day/night basis over urban Tianjin, a megacity in North China, to obtain seasonal and diurnal patterns of atmospheric water-soluble BrC. There were obvious seasonal but no evident diurnal variations in light absorption properties of BrC. In winter, BrC showed much stronger light absorbing ability since mass absorption efficiency at 365 nm (MAE365) (1.54 ± 0.33 m2 g−1), which was 1.8 times larger than that (0.84 ± 0.22 m2 g−1) in summer. Direct radiative effects by BrC absorption relative to black carbon in the UV range were 54.3 ± 16.9 % and 44.6 ± 13.9 %, respectively. In addition, five fluorescent components in BrC, including three humic-like fluorophores and two protein-like fluorophores were identified with excitation-emission matrix fluorescence spectrometry and parallel factor (PARAFAC) analysis. The lowly-oxygenated components contributed more to winter and nighttime samples, while more-oxygenated components increased in summer and daytime samples. The higher humification index (HIX) together with lower biological index (BIX) and fluorescence index (FI) suggest that the chemical compositions of BrC were associated with a high aromaticity degree in summer and daytime due to photobleaching. Fluorescent properties indicate that wintertime BrC were predominantly affected by primary emissions and fresh secondary organic aerosol (SOA), while summer ones were more influenced by aging processes. Results of source apportionments using organic molecular compositions of the same set of aerosols reveal that fossil fuel combustion and aging processes, primary bioaerosol emission, biomass burning, and biogenic and anthropogenic SOA formation were the main sources of BrC. Biomass burning contributed much larger to BrC in winter and at nighttime, while biogenic SOA contributed more in summer and at daytime. Especially, our study highlights that primary bioaerosol emission is an important source of BrC in urban Tianjin in summer.


2018 ◽  
Vol 18 (1) ◽  
pp. 405-425 ◽  
Author(s):  
Huizheng Che ◽  
Bing Qi ◽  
Hujia Zhao ◽  
Xiangao Xia ◽  
Thomas F. Eck ◽  
...  

Abstract. Aerosol pollution in eastern China is an unfortunate consequence of the region's rapid economic and industrial growth. Here, sun photometer measurements from seven sites in the Yangtze River Delta (YRD) from 2011 to 2015 were used to characterize the climatology of aerosol microphysical and optical properties, calculate direct aerosol radiative forcing (DARF) and classify the aerosols based on size and absorption. Bimodal size distributions were found throughout the year, but larger volumes and effective radii of fine-mode particles occurred in June and September due to hygroscopic growth and/or cloud processing. Increases in the fine-mode particles in June and September caused AOD440 nm > 1.00 at most sites, and annual mean AOD440 nm values of 0.71–0.76 were found at the urban sites and 0.68 at the rural site. Unlike northern China, the AOD440 nm was lower in July and August (∼ 0.40–0.60) than in January and February (0.71–0.89) due to particle dispersion associated with subtropical anticyclones in summer. Low volumes and large bandwidths of both fine-mode and coarse-mode aerosol size distributions occurred in July and August because of biomass burning. Single-scattering albedos at 440 nm (SSA440 nm) from 0.91 to 0.94 indicated particles with relatively strong to moderate absorption. Strongly absorbing particles from biomass burning with a significant SSA wavelength dependence were found in July and August at most sites, while coarse particles in March to May were mineral dust. Absorbing aerosols were distributed more or less homogeneously throughout the region with absorption aerosol optical depths at 440 nm ∼ 0.04–0.06, but inter-site differences in the absorption Angström exponent indicate a degree of spatial heterogeneity in particle composition. The annual mean DARF was −93 ± 44 to −79 ± 39 W m−2 at the Earth's surface and ∼ −40 W m−2 at the top of the atmosphere (for the solar zenith angle range of 50 to 80∘) under cloud-free conditions. The fine mode composed a major contribution of the absorbing particles in the classification scheme based on SSA, fine-mode fraction and extinction Angström exponent. This study contributes to our understanding of aerosols and regional climate/air quality, and the results will be useful for validating satellite retrievals and for improving climate models and remote sensing algorithms.


2009 ◽  
Vol 9 (3) ◽  
pp. 11843-11888
Author(s):  
Z. J. Wu ◽  
Y. F. Cheng ◽  
M. Hu ◽  
B. Wehner ◽  
N. Sugimoto ◽  
...  

Abstract. Three-year particle number size distributions were analyzed to characterize the size distributions and optical properties of the particles in the urban atmosphere of Beijing, China during dust events in the springs of 2004–2006 in combination with AERONET sun/sky radiometer data. The dust events were categorized as two different types (type 1 and 2). This categorization of the dust events was confirmed by the aerosol index images, columnar aerosol optical properties, and vertical potential temperature profiles. Dust particles dominated the total particle volume concentration (3–10000 nm) (over 70%) for the dust events in type 1, which happened under strong wind speeds. In this type, relatively purer dust particles were observed in the urban atmosphere. The events in type 2 with a longer stagnation time in the urban area and lower ratio of coarse mode particle to the total particle volume concentration occurred under stable local weather conditions. During the events in type 2, a superposition of the dust particles and anthropogenic aerosols was observed. The comparison of columnar optical properties among type 1, 2, and heavy pollution periods shows that the superposition of dust particles and anthropogenic aerosols can result in much higher AOD than pure dust particles in the urban atmosphere of Beijing. By comparing the particle volume size distributions retrieved from AERONET with those obtained from the Twin Differential Mobility Particle Sizer measurements, a discrepancy between the ground-based and column integrated particle volume size distributions was found, especially obvious for the coarse mode particles.


2007 ◽  
Vol 7 (4) ◽  
pp. 10743-10766
Author(s):  
Xiao-Feng Huang ◽  
Jian Zhen Yu

Abstract. Elemental carbon (EC), as one of the primary light-absorbing components in the atmosphere, has a significant impact on both regional and global climate. The environmental impacts of EC are strongly dependent on its particle size. Little is known about the size distribution characteristics of EC particles in the ambient environments of China. We here report size distributions of EC in the urban area of Shenzhen in South China. EC consistently exhibited two modes, a fine and a coarse mode. The majority of EC (~80%) in this coastal metropolitan city resided in particles smaller than 3.2 μm in diameter. The fine mode peaked at around either 0.42 μm or 0.75 μm. While the mode at 0.42 μm could be ascribed to fresh vehicular emissions in this region, the mode at 0.75 μm had to be a result of particle growth from smaller EC particles. We made a theoretical investigation of the particle growth processes that were responsible for EC particles to grow from 0.42 μm to 0.75 μm in the atmosphere. Our calculations indicate that the EC peak at 0.75 μm could not be produced through either coagulation or H2SO4 condensation; both were too slow to lead to significant EC growth. Hygroscopic growth was also calculated to be impossible. Instead, addition of sulfate through in-cloud processing was found to be able to significantly grow EC particles to explain the EC peak at 0.75 μm. We also estimated from the EC size distributions the mixing state of EC. In the droplet size, at least 45–60% of EC mass in the summer samples and 68% of EC mass in the winter samples was internally mixed with sulfate as a result of in-cloud processing. Such information on EC needs to be considered in modeling aerosol optical properties in this region. Our results also suggest that the in-cloud processing of primary EC particles could enhance light absorbing capacities through mixing EC and sulfate.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Wei Du ◽  
Lubna Dada ◽  
Jian Zhao ◽  
Xueshun Chen ◽  
Kaspar R. Daellenbach ◽  
...  

AbstractThe role of new particle formation (NPF) events and their contribution to haze formation through subsequent growth in polluted megacities is still controversial. To improve the understanding of the sources, meteorological conditions, and chemistry behind air pollution, we performed simultaneous measurements of aerosol composition and particle number size distributions at ground level and at 260 m in central Beijing, China, during a total of 4 months in 2015–2017. Our measurements show a pronounced decoupling of gas-to-particle conversion between the two heights, leading to different haze processes in terms of particle size distributions and chemical compositions. The development of haze was initiated by the growth of freshly formed particles at both heights, whereas the more severe haze at ground level was connected directly to local primary particles and gaseous precursors leading to higher particle growth rates. The particle growth creates a feedback loop, in which a further development of haze increases the atmospheric stability, which in turn strengthens the persisting apparent decoupling between the two heights and increases the severity of haze at ground level. Moreover, we complemented our field observations with model analyses, which suggest that the growth of NPF-originated particles accounted up to ∼60% of the accumulation mode particles in the Beijing–Tianjin–Hebei area during haze conditions. The results suggest that a reduction in anthropogenic gaseous precursors, suppressing particle growth, is a critical step for alleviating haze although the number concentration of freshly formed particles (3–40 nm) via NPF does not reduce after emission controls.


Sign in / Sign up

Export Citation Format

Share Document