scholarly journals Southern Ocean latitudinal gradients of Cloud Condensation Nuclei

2021 ◽  
Author(s):  
Ruhi S. Humphries ◽  
Melita D. Keywood ◽  
Sean Gribben ◽  
Ian M. McRobert ◽  
Jason P. Ward ◽  
...  

Abstract. The Southern Ocean region is one of the most pristine in the world, and serves as an important proxy for the pre-industrial atmosphere. Improving our understanding of the natural processes in this region are likely to result in the largest reductions in the uncertainty of climate and earth system models. While remoteness from anthropogenic and continental sources is responsible for its clean atmosphere, this also results in the dearth of atmospheric observations in the region. Here we present a statistical summary of the latitudinal gradient of aerosol and cloud condensation nuclei concentrations obtained from five voyages spanning the Southern Ocean between Australia and Antarctica from late-spring to early autumn (October to March) of the 2017/18 austral seasons. Three main regions of influence were identified: the northern sector (40–45° S) where continental and anthropogenic sources added to the background marine aerosol populations; the mid-latitude sector (45–65° S), where the aerosol populations reflected a mixture of biogenic and sea-salt aerosol; and the southern sector (65–70° S), south of the atmospheric Polar Front, where sea-salt aerosol concentrations were greatly reduced and aerosol populations were primarily biologically-derived sulfur species with a significant history in the Antarctic free-troposphere. The northern sector showed the highest number concentrations with median (25th to 75th percentiles) CN10 and CCN0:5 concentrations of (388–839) cm−3 and 322 (105–443) cm−3, respectively. Concentrations in the mid-latitudes were typically around 350 cm−3 and 160  cm−3 for CN10 and CCN0:5, respectively. In the southern sector, concentrations rose markedly, reaching 447 (298–446) cm−3 and 232 (186–271) cm−3 for CN10 and CCN0:5, respectively. The aerosol composition in this sector was marked by a distinct drop in sea-salt and increase in both sulfate fraction and absolute concentrations, resulting in a substantially higher CCN0:5 / CN10 activation ratio of 0.8 compared to around 0.4 for mid-latitudes. Long-term measurements at land-based research stations surrounding the Southern Ocean were found to be good representations at their respective latitudes i.e. CCN observations at Cape Grim (40°39'S) corresponded with CCN measurements from northern and mid-latitude sectors, while CN10 observations only corresponded with observations from the northern sector. Measurements from a simultaneous two year campaign at Macquarie Island (54°30'S) were found to represent all aerosol species well. The southern-most latitudes differed significantly from either of these stations and previous work suggests that Antarctic stations on the East Antarctic coastline do not represent the East Antarctic sea-ice latitudes well. Further measurements are needed to capture the long-term, seasonal and longitudinal variability in aerosol processes across the Southern Ocean.

2021 ◽  
Vol 21 (16) ◽  
pp. 12757-12782
Author(s):  
Ruhi S. Humphries ◽  
Melita D. Keywood ◽  
Sean Gribben ◽  
Ian M. McRobert ◽  
Jason P. Ward ◽  
...  

Abstract. The Southern Ocean region is one of the most pristine in the world and serves as an important proxy for the pre-industrial atmosphere. Improving our understanding of the natural processes in this region is likely to result in the largest reductions in the uncertainty of climate and earth system models. While remoteness from anthropogenic and continental sources is responsible for its clean atmosphere, this also results in the dearth of atmospheric observations in the region. Here we present a statistical summary of the latitudinal gradient of aerosol (condensation nuclei larger than 10 nm, CN10) and cloud condensation nuclei (CCN at various supersaturations) concentrations obtained from five voyages spanning the Southern Ocean between Australia and Antarctica from late spring to early autumn (October to March) of the 2017/18 austral seasons. Three main regions of influence were identified: the northern sector (40–45∘ S), where continental and anthropogenic sources coexisted with background marine aerosol populations; the mid-latitude sector (45–65∘ S), where the aerosol populations reflected a mixture of biogenic and sea-salt aerosol; and the southern sector (65–70∘ S), south of the atmospheric polar front, where sea-salt aerosol concentrations were greatly reduced and aerosol populations were primarily biologically derived sulfur species with a significant history in the Antarctic free troposphere. The northern sector showed the highest number concentrations with median (25th to 75th percentiles) CN10 and CCN0.5 concentrations of 681 (388–839) cm−3 and 322 (105–443) cm−3, respectively. Concentrations in the mid-latitudes were typically around 350 cm−3 and 160 cm−3 for CN10 and CCN0.5, respectively. In the southern sector, concentrations rose markedly, reaching 447 (298–446) cm−3 and 232 (186–271) cm−3 for CN10 and CCN0.5, respectively. The aerosol composition in this sector was marked by a distinct drop in sea salt and increase in both sulfate fraction and absolute concentrations, resulting in a substantially higher CCN0.5/CN10 activation ratio of 0.8 compared to around 0.4 for mid-latitudes. Long-term measurements at land-based research stations surrounding the Southern Ocean were found to be good representations at their respective latitudes; however this study highlighted the need for more long-term measurements in the region. CCN observations at Cape Grim (40∘39′ S) corresponded with CCN measurements from northern and mid-latitude sectors, while CN10 observations only corresponded with observations from the northern sector. Measurements from a simultaneous 2-year campaign at Macquarie Island (54∘30′ S) were found to represent all aerosol species well. The southernmost latitudes differed significantly from both of these stations, and previous work suggests that Antarctic stations on the East Antarctic coastline do not represent the East Antarctic sea-ice latitudes well. Further measurements are needed to capture the long-term, seasonal and longitudinal variability in aerosol processes across the Southern Ocean.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
P. Kishcha ◽  
B. Starobinets ◽  
R. Udisti ◽  
S. Becagli ◽  
A. di Sarra ◽  
...  

Sea-salt aerosol (SSA) is the dominant contributor to cloud condensation nuclei over ocean areas, where wind speed is significant. Thereby, SSA could affect cloud formation and play an important role in the Earth weather and climate. Rainfall could produce large impact on SSA concentration due to wet removal processes. An analysis of changes in sea-salt aerosol concentration after rainfall is essential for a deeper understanding of the process of SSA loading in the boundary layer. The current experimental study focused on analyzing time variations of SSA mass concentration after rainfall, on the basis of long-term daily SSA measurements during the three-year period 2006–2008, at the tiny Mediterranean island of Lampedusa (Central Mediterranean). To study the effect of rainfall on SSA time variations, we used the superposed epoch method. We applied this approach to differing rainfall events related to different months and atmospheric/sea conditions. Integrated processing was applied to SSA concentration anomalies, in order to filter out random variability. Observational evidence of SSA mass concentration oscillations after rainfall with a maximum on the 2nd day and a minimum on the 4th day was obtained. The knowledge of SSA variations after rainfall is important for validating rainout parameterization in existing sea-salt aerosol and climate models.


2017 ◽  
Vol 17 (7) ◽  
pp. 4419-4432 ◽  
Author(s):  
John L. Gras ◽  
Melita Keywood

Abstract. Multi-decadal observations of aerosol microphysical properties from regionally representative sites can be used to challenge regional or global numerical models that simulate atmospheric aerosol. Presented here is an analysis of multi-decadal observations at Cape Grim (Australia) that characterise production and removal of the background marine aerosol in the Southern Ocean marine boundary layer (MBL) on both short-term weather-related and underlying seasonal scales.A trimodal aerosol distribution comprises Aitken nuclei (< 100 nm), cloud condensation nuclei (CCN)/accumulation (100–350 nm) and coarse-particle (> 350 nm) modes, with the Aitken mode dominating number concentration. Whilst the integrated particle number in the MBL over the clean Southern Ocean is only weakly dependent on wind speed, the different modes in the aerosol size distribution vary in their relationship with wind speed. The balance between a positive wind dependence in the coarse mode and negative dependence in the accumulation/CCN mode leads to a relatively flat wind dependence in summer and moderately strong positive wind dependence in winter. The changeover in wind dependence of these two modes occurs in a very small size range at the mode intersection, indicative of differences in the balance of production and removal in the coarse and accumulation/CCN modes.Whilst a marine biological source of reduced sulfur appears to dominate CCN concentration over the summer months (December to February), other components contribute to CCN over the full annual cycle. Wind-generated coarse-mode sea salt is an important CCN component year round and is the second-most-important contributor to CCN from autumn through to mid-spring (March to November). A portion of the non-seasonally dependent contributor to CCN can clearly be attributed to wind-generated sea salt, with the remaining part potentially being attributed to long-range-transported material. Under conditions of greater supersaturation, as expected in more convective cyclonic systems and their associated fronts, Aitken mode particles become increasingly important as CCN.


2021 ◽  
Vol 21 (5) ◽  
pp. 3427-3446
Author(s):  
Kevin J. Sanchez ◽  
Gregory C. Roberts ◽  
Georges Saliba ◽  
Lynn M. Russell ◽  
Cynthia Twohy ◽  
...  

Abstract. Long-range transport of biogenic emissions from the coast of Antarctica, precipitation scavenging, and cloud processing are the main processes that influence the observed variability in Southern Ocean (SO) marine boundary layer (MBL) condensation nuclei (CN) and cloud condensation nuclei (CCN) concentrations during the austral summer. Airborne particle measurements on the HIAPER GV from north–south transects between Hobart, Tasmania, and 62∘ S during the Southern Ocean Clouds, Radiation Aerosol Transport Experimental Study (SOCRATES) were separated into four regimes comprising combinations of high and low concentrations of CCN and CN. In 5 d HYSPLIT back trajectories, air parcels with elevated CCN concentrations were almost always shown to have crossed the Antarctic coast, a location with elevated phytoplankton emissions relative to the rest of the SO in the region south of Australia. The presence of high CCN concentrations was also consistent with high cloud fractions over their trajectory, suggesting there was substantial growth of biogenically formed particles through cloud processing. Cases with low cloud fraction, due to the presence of cumulus clouds, had high CN concentrations, consistent with previously reported new particle formation in cumulus outflow regions. Measurements associated with elevated precipitation during the previous 1.5 d of their trajectory had low CCN concentrations indicating CCN were effectively scavenged by precipitation. A coarse-mode fitting algorithm was used to determine the primary marine aerosol (PMA) contribution, which accounted for <20 % of CCN (at 0.3 % supersaturation) and cloud droplet number concentrations. Vertical profiles of CN and large particle concentrations (Dp>0.07 µm) indicated that particle formation occurs more frequently above the MBL; however, the growth of recently formed particles typically occurs in the MBL, consistent with cloud processing and the condensation of volatile compound oxidation products. CCN measurements on the R/V Investigator as part of the second Clouds, Aerosols, Precipitation, Radiation and atmospheric Composition Over the southeRn Ocean (CAPRICORN-2) campaign were also conducted during the same period as the SOCRATES study. The R/V Investigator observed elevated CCN concentrations near Australia, likely due to continental and coastal biogenic emissions. The Antarctic coastal source of CCN from the south, CCN sources from the midlatitudes, and enhanced precipitation sink in the cyclonic circulation between the Ferrel and polar cells (around 60∘ S) create opposing latitudinal gradients in the CCN concentration with an observed minimum in the SO between 55 and 60∘ S. The SOCRATES airborne measurements are not influenced by Australian continental emissions but still show evidence of elevated CCN concentrations to the south of 60∘ S, consistent with biogenic coastal emissions. In addition, a latitudinal gradient in the particle composition, south of the Australian and Tasmanian coasts, is apparent in aerosol hygroscopicity derived from CCN spectra and aerosol particle size distribution. The particles are more hygroscopic to the north, consistent with a greater fraction of sea salt from PMA, and less hygroscopic to the south as there is more sulfate and organic particles originating from biogenic sources in coastal Antarctica.


2020 ◽  
Author(s):  
Silvan Müller ◽  
Nadine Borduas-Dedekind

&lt;p&gt;Organic aerosol (OA) is an important component of the atmospheric submicron particulate mass, consisting of a complex mixture of organic compounds from natural and anthropogenic sources. During its lifetime of approximately one week in the atmosphere, OA is exposed to sunlight and thus undergoes atmospheric processing through photochemistry. This photochemical aging mechanism is thought to have a substantial effect on the propensity of OA to participate in cloud-forming processes by increasing its cloud condensation nuclei (CCN) activity. However, this effect is not well-constrained, and the influence of photochemistry on the ice nucleation (IN) activity of OA is uncertain. In this study, we aim to better understand how the photomineralization mechanism changes the cloud-forming properties of OA by measuring the CCN and IN abilities of photochemically aged OA of different sources: (1) Laboratory-generated ammonium sulfate-methylglyoxal (a proxy for secondary OA), and ambient OA bulk solutions collected from (2) wood smoke and (3) urban particulate matter in Padua (Italy). The solutions are exposed to UV-B radiation in a photoreactor for up to 25 hour and subsequently analyzed for their IN ability and, following aerosolization, for their CCN ability. To correlate changes in cloud-forming properties with changes in chemical composition due to photomineralization, we measure total organic carbon, UV-Vis absorbance, and CO, CO&lt;sub&gt;2&lt;/sub&gt;, acetic acid, formic acid, pyruvic acid and oxalic acid production. Indeed, preliminary data of wood smoke OA highlights photomineralization as an important atmospheric aging process that modifies the CCN ability of OA. By characterizing both the CCN and IN abilities of photochemically aged OA, our study may thus provide important insights into the atmospheric evolution and cloud-forming properties of OA, potentially establishing photomineralization of OA as an important mechanism to consider in regional and global climate model predictions.&lt;/p&gt;


2012 ◽  
Vol 12 (1) ◽  
pp. 89-101 ◽  
Author(s):  
D. M. Westervelt ◽  
R. H. Moore ◽  
A. Nenes ◽  
P. J. Adams

Abstract. This work estimates the primary marine organic aerosol global emission source and its impact on cloud condensation nuclei (CCN) concentrations by implementing an organic sea spray source function into a series of global aerosol simulations. The source function assumes that a fraction of the sea spray emissions, depending on the local chlorophyll concentration, is organic matter in place of sea salt. Effect on CCN concentrations (at 0.2% supersaturation) is modeled using the Two-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled to the GISS II-prime general circulation model. The presence of organics affects CCN activity in competing ways: by reducing the amount of solute available in the particle and decreasing surface tension of CCN. To model surfactant effects, surface tension depression data from seawater samples taken near the Georgia coast were applied as a function of carbon concentrations. A global marine organic aerosol emission rate of 17.7 Tg C yr−1 is estimated from the simulations. Marine organics exert a localized influence on CCN(0.2%) concentrations, decreasing regional concentrations by no more than 5% and by less than 0.5% over most of the globe, assuming direct replacement of sea salt aerosol with organic aerosol. The decrease in CCN concentrations results from the fact that the decrease in particle solute concentration outweighs the organic surfactant effects. The low sensitivity of CCN(0.2%) to the marine organic emissions is likely due to the small compositional changes: the mass fraction of OA in accumulation mode aerosol increases by only ~15% in a biologically active region of the Southern Ocean. To test the sensitivity to uncertainty in the sea spray emissions process, we relax the assumption that sea spray aerosol number and mass remain fixed and instead can add to sea spray emissions rather than replace existing sea salt. In these simulations, we find that marine organic aerosol can increase CCN by up to 50% in the Southern Ocean and 3.7% globally during the austral summer. This vast difference in CCN impact highlights the need for further observational exploration of the sea spray aerosol emission process as well as evaluation and development of model parameterizations.


2005 ◽  
Vol 5 (12) ◽  
pp. 3233-3250 ◽  
Author(s):  
D. V. Spracklen ◽  
K. J. Pringle ◽  
K. S. Carslaw ◽  
M. P. Chipperfield ◽  
G. W. Mann

Abstract. We use the new GLOMAP model of global aerosol microphysics to investigate the sensitivity of modelled sulfate and sea salt aerosol properties to uncertainties in the driving microphysical processes and compare these uncertainties with those associated with aerosol and precursor gas emissions. Overall, we conclude that uncertainties in microphysical processes have a larger effect on global sulfate and sea salt derived condensation nuclei (CN) and cloud condensation nuclei (CCN) concentrations than uncertainties in present-day sulfur emissions. Our simulations suggest that uncertainties in predicted sulfate and sea salt CCN abundances due to poorly constrained microphysical processes are likely to be of a similar magnitude to long-term changes in sulfate and sea salt CCN due to changes in anthropogenic emissions. A microphysical treatment of the global sulfate aerosol allows the uncertainty in climate-relevant aerosol properties to be attributed to specific processes in a way that has not been possible with simpler aerosol schemes. In particular we conclude that: (1) changes in the binary H2SO4-H2O nucleation rate and condensation rate of gaseous H2SO4 cause a shift in the vertical location of the upper tropospheric CN layer by as much as 3 km, while the shape of the CN profile is essentially pre-served (2) uncertainties in the binary H2SO4-H2O nucleation rate have a relatively insignificant effect on marine boundary layer (MBL) aerosol properties; (3) emitting a fraction of anthropogenic SO2 as particulates (to represent production of sulfate particles in power plant plumes below the scale of the model grid (which is of the order of 300 km)) has the potential to change the global mean MBL sulfate-derived CN concentrations by up to 72%, and changes of up to a factor 20 can occur in polluted continental regions; (4) predicted global mean MBL sulfate and sea salt CCN concentrations change by 10 to 60% when several microphysical processes are changed within reasonable uncertainty ranges; (5) sulfate and sea salt derived CCN concentrations are particularly sensitive to primary particle emissions, with global mean MBL sulfate and sea salt CCN changing by up to 27% and local concentrations over continental regions changing by more than 100% when the percentage of anthropogenic SO2 emitted as particulates is changed from 0 to 5%; (6) large changes in sea spray flux have insignificant effects on global sulfate aerosol except when the mass accommodation coefficient of sulfuric acid on the salt particles is set unrealistically low.


2021 ◽  
Vol 21 (12) ◽  
pp. 9497-9513
Author(s):  
Jack B. Simmons ◽  
Ruhi S. Humphries ◽  
Stephen R. Wilson ◽  
Scott D. Chambers ◽  
Alastair G. Williams ◽  
...  

Abstract. Aerosol measurements over the Southern Ocean have been identified as critical to an improved understanding of aerosol–radiation and aerosol–cloud interactions, as there currently exists significant discrepancies between model results and measurements in this region. The atmosphere above the Southern Ocean provides crucial insight into an aerosol regime relatively free from anthropogenic influence, yet its remoteness ensures atmospheric measurements are relatively rare. Here we present observations from the Polar Cell Aerosol Nucleation (PCAN) campaign, hosted aboard the RV Investigator during a summer (January–March) 2017 voyage from Hobart, Australia, to the East Antarctic seasonal sea ice zone. A median particle number concentration (condensation nuclei > 3 nm; CN3) of 354 (95 % CI 345–363) cm−3 was observed from the voyage. Median cloud condensation nuclei (CCN) concentrations were 167 (95 % CI 158–176) cm−3. Measured particle size distributions suggested that aerosol populations had undergone significant cloud processing. To understand the variability in aerosol observations, measurements were classified by meteorological variables. Wind direction and absolute humidity were used to identify different air masses, and aerosol measurements were compared based on these identifications. CN3 concentrations measured during SE wind directions (median 594 cm−3) were higher than those measured during wind directions from the NW (median 265 cm−3). Increased frequency of measurements from these wind directions suggests the influence of large-scale atmospheric transport mechanisms on the local aerosol population in the boundary layer of the East Antarctic seasonal ice zone. Modelled back trajectories imply different air mass histories for each measurement group, supporting this suggestion. CN3 and CCN concentrations were higher during periods where the absolute humidity was less than 4.3 gH2O/m3, indicative of free tropospheric or Antarctic continental air masses, compared to other periods of the voyage. Increased aerosol concentration in air masses originating close to the Antarctic coastline have been observed in numerous other studies. However, the smaller changes observed in the present analyses suggest seasonal differences in atmospheric circulation, including lesser impact of synoptic low-pressure systems in summer. Further measurements in the region are required before a more comprehensive picture of atmospheric circulation in this region can be captured and its influence on local aerosol populations understood.


Sign in / Sign up

Export Citation Format

Share Document