scholarly journals Supplementary material to "Revisiting the Relationship between Atlantic Dust and Tropical Cyclone Activity using Aerosol Optical Depth Reanalyses: 2003–2018"

Author(s):  
Peng Xian ◽  
Philip J. Klotzbach ◽  
Jason P. Dunion ◽  
Matthew A. Janiga ◽  
Jeffrey S. Reid ◽  
...  
2012 ◽  
Vol 12 (4) ◽  
pp. 2117-2147 ◽  
Author(s):  
J. S. Reid ◽  
P. Xian ◽  
E. J. Hyer ◽  
M. K. Flatau ◽  
E. M. Ramirez ◽  
...  

Abstract. Much research and speculation exists about the meteorological and climatological impacts of biomass burning in the Maritime Continent (MC) of Indonesia and Malaysia, particularly during El Nino events. However, the MC hosts some of the world's most complicated meteorology, and we wish to understand how tropical phenomena at a range of scales influence observed burning activity. Using Moderate Resolution Imaging Spectroradiometer (MODIS) derived active fire hotspot patterns coupled with aerosol data assimilation products, satellite based precipitation, and meteorological indices, the meteorological context of observed fire prevalence and smoke optical depth in the MC are examined. Relationships of burning and smoke transport to such meteorological and climatic factors as the interannual El Nino-Southern Oscillation (ENSO), El Nino Modoki, Indian Ocean Dipole (IOD), the seasonal migration of the Intertropical Convergence Zone, the 30–90 day Madden Julian Oscillation (MJO), tropical waves, tropical cyclone activity, and diurnal convection were investigated. A conceptual model of how all of the differing meteorological scales affect fire activity is presented. Each island and its internal geography have different sensitivities to these factors which are likely relatable to precipitation patterns and land use practices. At the broadest scales as previously reported, we corroborate ENSO is indeed the largest factor. However, burning is also enhanced by periods of El Nino Modoki. Conversely, IOD influences are unclear. While interannual phenomena correlate to total seasonal burning, the MJO largely controls when visible burning occurs. High frequency phenomena which are poorly constrained in models such as diurnal convection and tropical cyclone activity also have an impact which cannot be ignored. Finally, we emphasize that these phenomena not only influence burning, but also the observability of burning, further complicating our ability to assign reasonable emissions.


2010 ◽  
Vol 23 (21) ◽  
pp. 5810-5825 ◽  
Author(s):  
Suzana J. Camargo ◽  
Adam H. Sobel

Abstract The statistical relationship between the quasi-biennial oscillation (QBO) and tropical cyclone (TC) activity is explored, with a focus on the North Atlantic. Although there is a statistically significant relationship between the QBO and TCs in the Atlantic from the 1950s to the 1980s, as found by previous studies, that relationship is no longer present in later years. Several possibilities for this change are explored, including the interaction with ENSO, volcanoes, QBO decadal variability, and interactions with solar forcing. None provides a completely satisfying explanation. In the other basins, the relationship is weaker than in the Atlantic, even in the early record.


2020 ◽  
Author(s):  
Peng Xian ◽  
Philip J. Klotzbach ◽  
Jason P. Dunion ◽  
Matthew A. Janiga ◽  
Jeffrey S. Reid ◽  
...  

Abstract. Previous studies have noted a relationship between African dust and Atlantic tropical cyclone (TC) activity. However, due to the limitations of past dust analyses, the strength of this relationship remains uncertain. The emergence of aerosol reanalyses, including the Navy Aerosol Analysis and Prediction System (NAAPS) Aerosol Optical Depth (AOD) reanalysis, NASA Modern-Era Retrospective analysis for Research and Applications, Version-2 (MERRA-2) and ECMWF Copernicus Atmosphere Monitoring Service reanalysis (CAMSRA) enable an investigation of the relationship between African dust and TC activity over the tropical Atlantic and Caribbean in a consistent temporal and spatial manner for 2003–2018. Although June-July-August (JJA) 550 nm dust AOD (DAOD) from all three reanalysis products correlate significantly over the tropical Atlantic and Caribbean, the difference in DAOD magnitude between products can be as large as 60 % over the Caribbean and 20 % over the tropical North Atlantic. Based on the three individual reanalyses, we have created an aerosol multi-reanalysis-consensus (MRC). The MRC presents overall better root mean square error over the tropical Atlantic and Caribbean compared to individual reanalyses when verified with ground-based AErosol RObotic NETwork (AERONET) AOD measurements. Each of the three individual reanalyses and the MRC have significant negative correlations between JJA Caribbean DAOD and seasonal Atlantic Accumulated Cyclone Energy (ACE), while the correlation between JJA tropical North Atlantic DAOD and seasonal ACE is weaker. Possible reasons for this regional difference are provided. A composite analysis of three high versus three low JJA Caribbean DAOD years reveals large differences in overall Atlantic TC activity. We also show that JJA Caribbean DAOD is significantly correlated with large-scale fields associated with variability in interannual Atlantic TC activity including zonal wind shear, mid-level moisture and SST, as well as ENSO and the Atlantic Meridional Mode (AMM), implying confounding effects of these factors on the dust-TC relationship. Further analysis indicates that seasonal Atlantic DAOD and the AMM, the leading mode of coupled Atlantic variability, are inversely related and intertwined in the dust-TC relationship.


2020 ◽  
Vol 20 (23) ◽  
pp. 15357-15378
Author(s):  
Peng Xian ◽  
Philip J. Klotzbach ◽  
Jason P. Dunion ◽  
Matthew A. Janiga ◽  
Jeffrey S. Reid ◽  
...  

Abstract. Previous studies have noted a relationship between African dust and Atlantic tropical cyclone (TC) activity. However, due to the limitations of past dust analyses, the strength of this relationship remains uncertain. The emergence of aerosol reanalyses, including the Navy Aerosol Analysis and Prediction System (NAAPS) aerosol optical depth (AOD) reanalysis, NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and ECMWF Copernicus Atmosphere Monitoring Service reanalysis (CAMSRA), enables an investigation of the relationship between African dust and TC activity over the tropical Atlantic and Caribbean in a consistent temporal and spatial manner for 2003–2018. Although June–July–August (JJA) 550 nm dust AOD (DAOD) from all three reanalysis products correlates significantly over the tropical Atlantic and Caribbean, the difference in DAOD magnitude between products can be as large as 60 % over the Caribbean and 20 % over the tropical North Atlantic. Based on the three individual reanalyses, we have created an aerosol multi-reanalysis consensus (MRC). The MRC presents overall better root mean square error over the tropical Atlantic and Caribbean compared to individual reanalyses when verified with ground-based AErosol RObotic NETwork (AERONET) AOD measurements. Each of the three individual reanalyses and the MRC have significant negative correlations between JJA Caribbean DAOD and seasonal Atlantic accumulated cyclone energy (ACE), while the correlation between JJA tropical North Atlantic DAOD and seasonal ACE is weaker. Possible reasons for this regional difference are provided. A composite analysis of 3 high-JJA-Caribbean-DAOD years versus 3 low-JJA-Caribbean-DAOD years reveals large differences in overall Atlantic TC activity. We also show that JJA Caribbean DAOD is significantly correlated with large-scale fields associated with variability in interannual Atlantic TC activity including zonal wind shear, mid-level moisture, and sea surface temperature (SST), as well as the El Niño–Southern Oscillation (ENSO) and the Atlantic Meridional Mode (AMM), implying confounding effects of these factors on the dust–TC relationship. We find that seasonal Atlantic DAOD and the AMM, the leading mode of coupled Atlantic variability, are inversely related and intertwined in the dust–TC relationship. Overall, DAOD in both the tropical Atlantic and Caribbean is negatively correlated with Atlantic hurricane frequency and intensity, with stronger correlations in the Caribbean than farther east in the tropical North Atlantic.


2011 ◽  
Vol 11 (7) ◽  
pp. 21091-21170 ◽  
Author(s):  
J. S. Reid ◽  
P. Xian ◽  
E. J. Hyer ◽  
M. K. Flatau ◽  
E. M. Ramirez ◽  
...  

Abstract. Much research and speculation exists about the meteorological and climatological impacts of biomass burning in the Maritime Continent (MC) of Indonesia and Malaysia, particularly during El Niño events. However, the MC hosts some of the world's most complicated meteorology, and we wish to understand how tropical phenomena at a range of scales influence observed burning activity. Using Moderate Resolution Imaging Spectroradiometer (MODIS) derived active fire hotspot patterns coupled with aerosol data assimilation products, satellite based precipitation, and meteorological indices, the meteorological context of observed fire prevalence and smoke optical depth in the MC are examined. Relationships of burning and smoke transport to such meteorological and climatic factors as the interannual El Niño-Southern Oscillation (ENSO), El Niño Modoki, Indian Ocean Dipole (IOP), the seasonal migration of the Intertropical Convergence Zone, the 30–90 day Madden Julian Oscillation (MJO), tropical waves, tropical cyclone activity, and diurnal convection were investigated. A conceptual model of how all of the differing meteorological scales affect fire activity is presented. Each island and its internal geography have different sensitivities to these factors which are likely relatable to precipitation patterns and land use practices. At the broadest scales as previously reported, we confirm ENSO is indeed the largest factor. However, burning is also enhanced by periods of El Niño Modoki. Conversely IOD influences are unclear. While interannual phenomena correlate to total seasonal burning, the MJO largely controls when visible burning occurs. High frequency phenomena which are poorly constrained in models such as diurnal convection and tropical cyclone activity also have an impact which cannot be ignored. Finally, we emphasize that these phenomena not only influence burning, but also the observability of burning, further complicating our ability to assign reasonable emissions.


Sign in / Sign up

Export Citation Format

Share Document