scholarly journals Revisiting the Relationship between Atlantic Dust and Tropical Cyclone Activity usingAerosol Optical Depth Reanalyses: 2003-2018. Peng Xian, Philip J. Klotzbach, Jason P. Dunion, Matthew A. Janiga, Jeffrey S. Reid ,Peter R. Colarco and Zak Kipling

2020 ◽  
2012 ◽  
Vol 12 (4) ◽  
pp. 2117-2147 ◽  
Author(s):  
J. S. Reid ◽  
P. Xian ◽  
E. J. Hyer ◽  
M. K. Flatau ◽  
E. M. Ramirez ◽  
...  

Abstract. Much research and speculation exists about the meteorological and climatological impacts of biomass burning in the Maritime Continent (MC) of Indonesia and Malaysia, particularly during El Nino events. However, the MC hosts some of the world's most complicated meteorology, and we wish to understand how tropical phenomena at a range of scales influence observed burning activity. Using Moderate Resolution Imaging Spectroradiometer (MODIS) derived active fire hotspot patterns coupled with aerosol data assimilation products, satellite based precipitation, and meteorological indices, the meteorological context of observed fire prevalence and smoke optical depth in the MC are examined. Relationships of burning and smoke transport to such meteorological and climatic factors as the interannual El Nino-Southern Oscillation (ENSO), El Nino Modoki, Indian Ocean Dipole (IOD), the seasonal migration of the Intertropical Convergence Zone, the 30–90 day Madden Julian Oscillation (MJO), tropical waves, tropical cyclone activity, and diurnal convection were investigated. A conceptual model of how all of the differing meteorological scales affect fire activity is presented. Each island and its internal geography have different sensitivities to these factors which are likely relatable to precipitation patterns and land use practices. At the broadest scales as previously reported, we corroborate ENSO is indeed the largest factor. However, burning is also enhanced by periods of El Nino Modoki. Conversely, IOD influences are unclear. While interannual phenomena correlate to total seasonal burning, the MJO largely controls when visible burning occurs. High frequency phenomena which are poorly constrained in models such as diurnal convection and tropical cyclone activity also have an impact which cannot be ignored. Finally, we emphasize that these phenomena not only influence burning, but also the observability of burning, further complicating our ability to assign reasonable emissions.


2010 ◽  
Vol 23 (21) ◽  
pp. 5810-5825 ◽  
Author(s):  
Suzana J. Camargo ◽  
Adam H. Sobel

Abstract The statistical relationship between the quasi-biennial oscillation (QBO) and tropical cyclone (TC) activity is explored, with a focus on the North Atlantic. Although there is a statistically significant relationship between the QBO and TCs in the Atlantic from the 1950s to the 1980s, as found by previous studies, that relationship is no longer present in later years. Several possibilities for this change are explored, including the interaction with ENSO, volcanoes, QBO decadal variability, and interactions with solar forcing. None provides a completely satisfying explanation. In the other basins, the relationship is weaker than in the Atlantic, even in the early record.


2011 ◽  
Vol 11 (7) ◽  
pp. 21091-21170 ◽  
Author(s):  
J. S. Reid ◽  
P. Xian ◽  
E. J. Hyer ◽  
M. K. Flatau ◽  
E. M. Ramirez ◽  
...  

Abstract. Much research and speculation exists about the meteorological and climatological impacts of biomass burning in the Maritime Continent (MC) of Indonesia and Malaysia, particularly during El Niño events. However, the MC hosts some of the world's most complicated meteorology, and we wish to understand how tropical phenomena at a range of scales influence observed burning activity. Using Moderate Resolution Imaging Spectroradiometer (MODIS) derived active fire hotspot patterns coupled with aerosol data assimilation products, satellite based precipitation, and meteorological indices, the meteorological context of observed fire prevalence and smoke optical depth in the MC are examined. Relationships of burning and smoke transport to such meteorological and climatic factors as the interannual El Niño-Southern Oscillation (ENSO), El Niño Modoki, Indian Ocean Dipole (IOP), the seasonal migration of the Intertropical Convergence Zone, the 30–90 day Madden Julian Oscillation (MJO), tropical waves, tropical cyclone activity, and diurnal convection were investigated. A conceptual model of how all of the differing meteorological scales affect fire activity is presented. Each island and its internal geography have different sensitivities to these factors which are likely relatable to precipitation patterns and land use practices. At the broadest scales as previously reported, we confirm ENSO is indeed the largest factor. However, burning is also enhanced by periods of El Niño Modoki. Conversely IOD influences are unclear. While interannual phenomena correlate to total seasonal burning, the MJO largely controls when visible burning occurs. High frequency phenomena which are poorly constrained in models such as diurnal convection and tropical cyclone activity also have an impact which cannot be ignored. Finally, we emphasize that these phenomena not only influence burning, but also the observability of burning, further complicating our ability to assign reasonable emissions.


Sign in / Sign up

Export Citation Format

Share Document