Effects of <i>a priori</i> profile shape assumptions oncomparisons between satellite NO<sub>2</sub> columns and model simulations
Abstract. A critical step in satellite retrievals of trace gas columns is the calculation of the air mass factor (AMF) used to convert observed slant columns to vertical columns. This calculation requires a priori information on the shape of the vertical profile. As a result, comparisons between satellite-retrieved and model-simulated column abundances are influenced by the a priori profile shape. We examine how differences between the shape of the simulated and a priori profile can impact the interpretation of satellite retrievals by performing an adjoint-based 4D-Var assimilation of synthetic NO2 observations for constraining NOx emissions. We use the GEOS-Chem Adjoint model to perform assimilations using a variety of AMFs to examine how a posteriori emission estimates are affected if the AMF is calculated using an a priori shape factor that is inconsistent with the simulated profile. In these tests, an inconsistent a priori shape factor increased errors in a posteriori emissions estimates by up to 80 % over polluted regions. As the difference between the simulated profile shape and the a priori profile shape increases, so do the corresponding assimilated emission errors. This reveals the importance of using simulated profile information for AMF calculations when comparing that simulated output to satellite retrieved columns.