scholarly journals Exploring the composition and volatility of secondary organic aerosols in mixed anthropogenic and biogenic precursor systems

2021 ◽  
Author(s):  
Aristeidis Voliotis ◽  
Yu Wang ◽  
Yunqi Shao ◽  
Mao Du ◽  
Thomas J. Bannan ◽  
...  

Abstract. Secondary organic aerosol (SOA) formation from mixtures of volatile precursors may be influenced by the molecular interactions of the products of the components of the mixture. Here, we report measurements of the volatility distribution of SOA formed from the photo-oxidation o-cresol, α-pinene and their mixtures, representative anthropogenic and biogenic precursors, in an atmospheric simulation chamber. The combination of two independent thermal techniques (thermal denuder and the Filter Inlet for Gases and Aerosols coupled to a high resolution time of flight chemical ionisation mass spectrometer) to measure the particle volatility, along with detailed gas and particle phase composition measurements provides links between the chemical composition of the mixture and the resultant SOA volatility. The products that were only present in the SOA of the mixture had higher O:C and lower volatility compared to those deriving from the individual precursors. This suggests that new product formation can reduce the volatility in mixtures. At the same time, some of the larger molecules with lower volatility produced in the single α-pinene and o-cresol system were not present in the mixture leading to an increase of the average volatility. These opposite effects resulted the volatility distribution of the SOA of the mixture to be between those of the individual precursors. For example, compounds with effective saturation concentration less or equal than 0.01 μg m−3 represented 28, 39 and 37 % of the SOA mass in the α-pinene, o-cresol and mixed precursor experiments, respectively. We further explore the sensitivity limitations of our technique to the reported results and we show that the particle volatility can be qualitatively assessed, while caution should be held when linking the chemical composition to the particle volatility. These results provide the first detailed observations of SOA particle volatility and composition in mixed anthropogenic and biogenic systems and provides an analytical context that can be used to explore particle volatility in chamber experiments.

2021 ◽  
Vol 21 (18) ◽  
pp. 14251-14273
Author(s):  
Aristeidis Voliotis ◽  
Yu Wang ◽  
Yunqi Shao ◽  
Mao Du ◽  
Thomas J. Bannan ◽  
...  

Abstract. Secondary organic aerosol (SOA) formation from mixtures of volatile precursors may be influenced by the molecular interactions of the components of the mixture. Here, we report measurements of the volatility distribution of SOA formed from the photo-oxidation of o-cresol, α-pinene, and their mixtures, representative anthropogenic and biogenic precursors, in an atmospheric simulation chamber. The combination of two independent thermal techniques (thermal denuder, TD, and the Filter Inlet for Gases and Aerosols coupled to a high-resolution time-of-flight chemical ionization mass spectrometer, FIGAERO-CIMS) to measure the particle volatility, along with detailed gas- and particle-phase composition measurements, provides links between the chemical composition of the mixture and the resultant SOA particle volatility. The SOA particle volatility obtained by the two independent techniques showed substantial discrepancies. The particle volatility obtained by the TD was wider, spanning across the LVOC and SVOC range, while the respective FIGAERO-CIMS derived using two different methods (i.e. calibrated Tmax and partitioning calculations) was substantially higher (mainly in the SVOC and IVOC, respectively) and narrow. Although the quantification of the SOA particle volatility was challenging, both techniques and methods showed similar trends, with the volatility of the SOA formed from the photo-oxidation of α-pinene being higher than that measured in the o-cresol system, while the volatility of the SOA particles of the mixture was between those measured at the single-precursor systems. This behaviour could be explained by two opposite effects, the scavenging of the larger molecules with lower volatility produced in the single-precursor experiments that led to an increase in the average volatility and the formation of unique-to-the-mixture products that had higher O:C, MW, OSc‾ and, consequently, lower volatility compared to those derived from the individual precursors. We further discuss the potential limitations of FIGAERO-CIMS to report quantitative volatilities and their implications for the reported results, and we show that the particle volatility changes can be qualitatively assessed, while caution should be taken when linking the chemical composition to the particle volatility. These results present the first detailed observations of SOA particle volatility and composition in mixed anthropogenic and biogenic systems and provide an analytical context that can be used to explore particle volatility in chamber experiments.


2020 ◽  
Vol 20 (22) ◽  
pp. 14393-14405
Author(s):  
Liqing Hao ◽  
Eetu Kari ◽  
Ari Leskinen ◽  
Douglas R. Worsnop ◽  
Annele Virtanen

Abstract. Ammonia (NH3), a gaseous compound ubiquitously present in the atmosphere, is involved in the formation of secondary organic aerosol (SOA), but the exact mechanism is still not well known. This study presents the results of SOA experiments from the photooxidation of α-pinene in the presence of NH3 in the reaction chamber. SOA was formed in in nucleation experiments and in seeded experiments with ammonium sulfate particles as seeds. The chemical composition and time series of compounds in the gas and particle phase were characterized by an online high-resolution time-of-flight proton-transfer-reaction mass spectrometer (HR-ToF-PTRMS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), respectively. Our results show that the mass concentration of ammonium (NH4+) was still rising even after the mass concentration of the organic component started to decrease due to aerosol wall deposition and evaporation, implying the continuous new formation of particle-phase ammonium in the process. Stoichiometric neutralization analysis of aerosol indicates that organic acids have a central role in the formation of particle-phase ammonium. Our measurements show a good correlation between the gas-phase organic mono- and dicarboxylic acids formed in the photooxidation of α-pinene and the ammonium in the particle phase, thus highlighting the contribution of gas-phase organic acids to the ammonium formation. The work shows that the gas-phase organic acids contribute to the SOA formation by forming organic ammonium salts through acid–base reaction. The changes in aerosol mass, particle size and chemical composition resulting from the NH3–SOA interaction can potentially alter the aerosol direct and indirect forcing and therefore alter its impact on climate change.


2020 ◽  
Author(s):  
Liqing Hao ◽  
Eetu Kari ◽  
Ari Leskinen ◽  
Douglas R. Worsnop ◽  
Annele Virtanen

Abstract. Ammonia (NH3), a gasous compound ubiquitiously present in the atmosphere, is involved in the formation of secondary organic aerosol (SOA), but the exact mechanisum is still not well known. This study presents the results of SOA experiments from the photooxidation of α-pinene in the presence of NH3 in the reaction chamber. SOA was formed in nucleation experiment and in seeded experiment with ammonium sulfate particles as seeds. The chemical composition and time-series of compounds in the gas- and particle- phase were characterized by an on-line high-resolution time-of-flight proton transfer reaction mass spectrometer (HR-ToF-PTRMS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), respectively. Our results show that for the aerosol particles in cloud condensation nuclei (CCN) size, the mass concentration of ammonium (NH4+) was still rising even after the mass concentration of organic component started to decrease due to aerosol wall deposition and evaporation, implying the continuous new formation of particle phase ammonium in the process. Stoichiometric neutralization analysis of aerosol indicates that organic acids have a central role in the formation of particle phase ammonium. Our measurements show a good correlation between the gas phase organic mono- and di-carboxylic acids formed in the photooxidation of α-pinene and the ammonium in the particle phase, thus highlighting the contribution of gas-phase organic acids to the ammonium formation in the CCN-size SOA particles. The work shows that the gas-phase organic acids contribute to the SOA formation by forming ammonium salts through acid-base reaction. The changes in aerosol mass, particle size and chemical composition resulting from the NH3-SOA interaction can potentially alter the aerosol direct and indirect forcing and therefore alter its impact on climate change.


2011 ◽  
Vol 11 (8) ◽  
pp. 21789-21834
Author(s):  
R. H. Moore ◽  
R. Bahreini ◽  
C. A. Brock ◽  
K. D. Froyd ◽  
J. Cozic ◽  
...  

Abstract. We present a comprehensive characterization of cloud condensation nuclei (CCN) sampled in the Alaskan Arctic during the 2008 Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) project, a component of the POLARCAT and International Polar Year (IPY) initiatives. Four distinct air mass types were sampled including relatively pristine Arctic background conditions as well as biomass burning and anthropogenic pollution plumes. Despite differences in chemical composition, inferred aerosol hygroscopicities were fairly invariant and ranged from κ = 0.1–0.3 over the atmospherically-relevant range of water vapor supersaturations studied. Analysis of the individual mass spectral m/z 43 and 44 peaks from an aerosol mass spectrometer show the organic aerosols sampled to be well-oxygenated, consistent with with long-range transport and aerosol aging processes. However, inferred hygroscopicities are less than would be predicted based on previous parameterizations of biogenic oxygenated organic aerosol, suggesting an upper limit on organic aerosol hygroscopicity above which κ is less sensitive to the O:C ratio. Most Arctic aerosol act as CCN above 0.1 % supersaturation, although the data suggest the presence of an externally-mixed, non-CCN-active mode comprising approximately 0–20 % of the aerosol number. CCN closure was assessed using measured size distributions, bulk chemical composition measurements, and assumed aerosol mixing states; CCN predictions tended toward overprediction, with the best agreement (± 0–20 %) obtained by assuming the aerosol to be externally-mixed with soluble organics. Closure also varied with CCN concentration, and the best agreement was found for CCN concentrations above 100 cm−3 with a 1.5- to 3-fold overprediction at lower concentrations.


2020 ◽  
Author(s):  
Louise N. Jensen ◽  
Manjula R. Canagaratna ◽  
Kasper Kristensen ◽  
Lauriane L. J. Quéléver ◽  
Bernadette Rosati ◽  
...  

Abstract. This work investigates the individual and combined effects of temperature and volatile organic compound precursor concentration on the chemical composition of particles formed in the dark ozonolysis of α-pinene. All experiments were conducted in a 5 m3 Teflon chamber at an initial ozone concentration of 100 ppb and α-pinene concentrations of 10 ppb and 50 ppb, respectively, at constant temperatures of 20 °C, 0 °C, or −15 °C, and at changing temperatures (ramps) from −15 °C to 20 °C and from 20 °C to −15 °C. The chemical composition of the particles was probed using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). A four-factor solution of a Positive Matrix Factorization (PMF) analysis of combined HR-ToF-AMS data from experiments conducted under different conditions is presented. The PMF analysis as well as elemental composition analysis of individual experiments show that secondary organic aerosol particles with the highest oxidation level are formed from the lowest initial α-pinene concentration (10 ppb) and at the highest temperature (20 °C). Higher initial α-pinene concentration (50 ppb) and/or lower temperature (0 °C or −15 °C) result in lower oxidation level of the molecules contained in the particles. With respect to carbon oxidation state, particles formed at 0 °C are more comparable to particles formed at −15 °C than to those formed at 20 °C. A remarkable observation is that changes in temperature during or after particle formation result in only minor changes in the elemental composition of the particles. The temperature at which aerosol particle formation is initiated thus seems to be a critical parameter for the particle elemental composition. Comparison of the AMS derived estimates of the content of organic acids in the particles based on m/z 44 in the spectra show good agreement with results from off-line molecular analysis of particle filter samples collected from the same experiments. While higher temperatures are associated with a decrease in the absolute mass concentrations of organic acids (R-COOH) and organic acid functionalities (-COOH), the organic acid functionalities account for an increasing fraction of the measured SOA mass at higher temperatures.


2010 ◽  
Vol 10 (11) ◽  
pp. 29249-29289 ◽  
Author(s):  
M. N. Chan ◽  
J. D. Surratt ◽  
A. W. H. Chan ◽  
K. Schilling ◽  
J. H. Offenberg ◽  
...  

Abstract. The secondary organic aerosol (SOA) yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS). A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increase of acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde) are identified as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS).


2019 ◽  
Vol 19 (18) ◽  
pp. 11687-11700 ◽  
Author(s):  
Wei Huang ◽  
Harald Saathoff ◽  
Xiaoli Shen ◽  
Ramakrishna Ramisetty ◽  
Thomas Leisner ◽  
...  

Abstract. The chemical composition and volatility of organic aerosol (OA) particles were investigated during July–August 2017 and February–March 2018 in the city of Stuttgart, one of the most polluted cities in Germany. Total non-refractory particle mass was measured with a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS; hereafter AMS). Aerosol particles were collected on filters and analyzed in the laboratory with a filter inlet for gases and aerosols coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (FIGAERO-HR-ToF-CIMS; hereafter CIMS), yielding the molecular composition of oxygenated OA (OOA) compounds. While the average organic mass loadings are lower in the summer period (5.1±3.2 µg m−3) than in the winter period (8.4±5.6 µg m−3), we find relatively larger mass contributions of organics measured by AMS in summer (68.8±13.4 %) compared to winter (34.8±9.5 %). CIMS mass spectra show OOA compounds in summer have O : C of 0.82±0.02 and are more influenced by biogenic emissions, while OOA compounds in winter have O : C of 0.89±0.06 and are more influenced by biomass burning emissions. Volatility parametrization analysis shows that OOA in winter is less volatile with higher contributions of low-volatility organic compounds (LVOCs) and extremely low-volatility organic compounds (ELVOCs). We partially explain this by the higher contributions of compounds with shorter carbon chain lengths and a higher number of oxygen atoms, i.e., higher O : C in winter. Organic compounds desorbing from the particles deposited on the filter samples also exhibit a shift of signal to higher desorption temperatures (i.e., lower apparent volatility) in winter. This is consistent with the relatively higher O : C in winter but may also be related to higher particle viscosity due to the higher contributions of larger-molecular-weight LVOCs and ELVOCs, interactions between different species and/or particles (particle matrix), and/or thermal decomposition of larger molecules. The results suggest that whereas lower temperature in winter may lead to increased partitioning of semi-volatile organic compounds (SVOCs) into the particle phase, this does not result in a higher overall volatility of OOA in winter and that the difference in sources and/or chemistry between the seasons plays a more important role. Our study provides insights into the seasonal variation of the molecular composition and volatility of ambient OA particles and into their potential sources.


2021 ◽  
Author(s):  
Magdalena Vallon ◽  
Linyu Gao ◽  
Junwei Song ◽  
Feng Jiang ◽  
Harald Saathoff

<p>The chemical composition of aerosols, in both gas and particle phase, is an important factor regarding their properties influencing air quality, weather, climate, and human health. Organic compounds are a major fraction of atmospheric aerosols and their composition depends on chemical processing by atmospheric oxidants and photochemical reactions. These processes are complex due to the abundance of potential reactions and rarely studied over a wider range of atmospheric temperatures. To achieve a better understanding of three different photochemical processes relevant for the atmosphere as well as the capabilities to investigate such processes in our simulation chamber we studied three different organic aerosol systems between 213 K and 293 K in the AIDA simulation chamber at the Karlsruhe Institute of Technology.  With the first system we studied the direct photolysis of 2,3-pentanedion which is a typical carbonyl compound emitted by the food industry but also by trees. In the second system we studied the depletion of pinic and pinonic acid by radicals formed through photolysis of an iron oxalate complex, which acts as the photosensitizer in this system, all present in aqueous aerosol particles. Furthermore, we studied the photolysis of a nitrogen heterocycle in aerosol particles, which can form in the atmosphere by the reaction of dicarbonyls and shows strong absorption in the visible [1].</p><p>Photochemical reactions were studied using a new LED light-source simulating solar radiation in the UV and visible. The organic aerosols were generated by nebulizing aqueous solutions containing the aerosol components.  The aerosols were analysed by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a proton transfer mass spectrometer (CHARON-PTRMS) and a high–resolution time-of-flight chemical ionization mass spectrometer (FIGAERO-HR-ToF-CIMS).  The latter two allow to study the composition of gas phase and particle phase separately.</p><p>In this presentation, we will discuss the changes that these organic compounds undergo in gas and particle phase, during photochemical aging at temperatures between 213 and 293 K.</p><p> </p><p>[1] C. J. Kampf, A. Filippi, C. Zuth, T. Hoffmann and T. Opatz, Secondary brown carbon formation via the dicarbonyl imine pathway: nitrogen heterocycle formation and synergistic effects, Phys. Chem. Chem. Phys, 2016, 18, 18353</p>


2011 ◽  
Vol 11 (4) ◽  
pp. 1735-1751 ◽  
Author(s):  
M. N. Chan ◽  
J. D. Surratt ◽  
A. W. H. Chan ◽  
K. Schilling ◽  
J. H. Offenberg ◽  
...  

Abstract. The secondary organic aerosol (SOA) yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS). A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde) are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS).


2013 ◽  
Vol 13 (2) ◽  
pp. 3533-3573 ◽  
Author(s):  
Y. J. Li ◽  
B. Y. L. Lee ◽  
J. Z. Yu ◽  
N. L. Ng ◽  
C. K. Chan

Abstract. The chemical characteristics of organic aerosol (OA) are still poorly constrained. Here we present observation results of the degree of oxygenation of OA based on high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS) measurements made at a coastal site in Hong Kong from late April to the end of May in 2011. Two foggy periods and one hazy period were chosen for detailed analysis to compare the changes in the degree of oxygenation of OA due to different processes. The Extended Aerosol Inorganic Model (E-AIM) predicted a fine particle liquid water content (LWCfp) up to 85 μg m−3 during the foggy days. Particle concentration as measured by HR-ToF-AMS was up to 60 μg m−3 during the hazy days and up to 30 μg m−3 during the foggy days. The degree of oxygenation of OA, as indicated by several parameters including the fraction of m/z 44 in organic mass spectra (f44), the elemental ratio of oxygen to carbon (O : C), and the carbon oxidation state (OSc), was evaluated against the odd oxygen (Ox) concentration, LWCfp, ionic strength (IS), and in-situ pH (pHis). Results suggest that the high concentration of OA (on average 11 μg m−3) and the high degree of oxygenation (f44 = 0.15, O : C = 0.51, and OSc = −0.31) during the hazy period were mainly due to gas-phase oxidation. During the foggy periods with low photochemical activities, the degree of oxygenation of OA was almost as high as that on the hazy days and significantly higher than that during non-foggy/non-hazy days. However, the OA evolved quite differently in the two foggy periods. The first foggy period in late April saw a larger LWCfp and a lower Ox concentration and the OA was made up of ~ 20% semi-volatile oxygenated organic aerosol (SVOOA) as resolved by positive matrix factorization (PMF). In the second foggy period in mid-May, higher Ox concentration and lower LWCfp were observed, and the OA was found to contain >50% low-volatility oxygenated organic aerosols (LVOOA). An examination of the particle-phase constituents suggests that partitioning may have been the dominating process through which oxygenated species were incorporated into the particle phase during the first foggy period, while oxidation in the aqueous phase may have been the dominating process during the second foggy period. Both physical and chemical processes were found to be important for oxygenated OA formation.


Sign in / Sign up

Export Citation Format

Share Document