scholarly journals Temperature and VOC concentration as controlling factors for chemical composition of alpha-pinene derived secondary organic aerosol

Author(s):  
Louise N. Jensen ◽  
Manjula R. Canagaratna ◽  
Kasper Kristensen ◽  
Lauriane L. J. Quéléver ◽  
Bernadette Rosati ◽  
...  

Abstract. This work investigates the individual and combined effects of temperature and volatile organic compound precursor concentration on the chemical composition of particles formed in the dark ozonolysis of α-pinene. All experiments were conducted in a 5 m3 Teflon chamber at an initial ozone concentration of 100 ppb and α-pinene concentrations of 10 ppb and 50 ppb, respectively, at constant temperatures of 20 °C, 0 °C, or −15 °C, and at changing temperatures (ramps) from −15 °C to 20 °C and from 20 °C to −15 °C. The chemical composition of the particles was probed using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). A four-factor solution of a Positive Matrix Factorization (PMF) analysis of combined HR-ToF-AMS data from experiments conducted under different conditions is presented. The PMF analysis as well as elemental composition analysis of individual experiments show that secondary organic aerosol particles with the highest oxidation level are formed from the lowest initial α-pinene concentration (10 ppb) and at the highest temperature (20 °C). Higher initial α-pinene concentration (50 ppb) and/or lower temperature (0 °C or −15 °C) result in lower oxidation level of the molecules contained in the particles. With respect to carbon oxidation state, particles formed at 0 °C are more comparable to particles formed at −15 °C than to those formed at 20 °C. A remarkable observation is that changes in temperature during or after particle formation result in only minor changes in the elemental composition of the particles. The temperature at which aerosol particle formation is initiated thus seems to be a critical parameter for the particle elemental composition. Comparison of the AMS derived estimates of the content of organic acids in the particles based on m/z 44 in the spectra show good agreement with results from off-line molecular analysis of particle filter samples collected from the same experiments. While higher temperatures are associated with a decrease in the absolute mass concentrations of organic acids (R-COOH) and organic acid functionalities (-COOH), the organic acid functionalities account for an increasing fraction of the measured SOA mass at higher temperatures.

2021 ◽  
Vol 21 (15) ◽  
pp. 11545-11562
Author(s):  
Louise N. Jensen ◽  
Manjula R. Canagaratna ◽  
Kasper Kristensen ◽  
Lauriane L. J. Quéléver ◽  
Bernadette Rosati ◽  
...  

Abstract. This work investigates the individual and combined effects of temperature and volatile organic compound precursor concentrations on the chemical composition of particles formed in the dark ozonolysis of α-pinene. All experiments were conducted in a 5 m3 Teflon chamber at an initial ozone concentration of 100 ppb and initial α-pinene concentrations of 10 and 50 ppb, respectively; at constant temperatures of 20, 0, or −15 ∘C; and at changing temperatures (ramps) from −15 to 20 and from 20 to −15 ∘C. The chemical composition of the particles was probed using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). A four-factor solution of a positive matrix factorization (PMF) analysis of the combined HR-ToF-AMS data is presented. The PMF analysis and the elemental composition analysis of individual experiments show that secondary organic aerosol particles with the highest oxidation level are formed from the lowest initial α-pinene concentration (10 ppb) and at the highest temperature (20 ∘C). A higher initial α-pinene concentration (50 ppb) and/or lower temperature (0 or −15 ∘C) results in a lower oxidation level of the molecules contained in the particles. With respect to the carbon oxidation state, particles formed at 0 ∘C are more comparable to particles formed at −15 ∘C than to those formed at 20 ∘C. A remarkable observation is that changes in temperature during particle formation result in only minor changes in the elemental composition of the particles. Thus, the temperature at which aerosol particle formation is induced seems to be a critical parameter for the particle elemental composition. Comparison of the HR-ToF-AMS-derived estimates of the content of organic acids in the particles based on m/z 44 in the mass spectra show good agreement with results from off-line molecular analysis of particle filter samples collected from the same experiments. Higher temperatures are associated with a decrease in the absolute mass concentrations of organic acids (R-COOH) and organic acid functionalities (-COOH), while the organic acid functionalities account for an increasing fraction of the measured particle mass.


2020 ◽  
Author(s):  
Kasper Kristensen ◽  
Louise N. Jensen ◽  
Lauriane L. J. Quéléver ◽  
Sigurd Christiansen ◽  
Bernadette Rosati ◽  
...  

Abstract. Little is known about the effects of low temperatures on the formation of SOA from α-pinene. In the current work, ozone-initiated oxidation of α-pinene at initial concentrations of 10 and 50 ppb, respectively, is performed at temperatures of 20, 0 and −15 °C in the Aarhus University Research on Aerosol (AURA) smog chamber during the Aarhus Chamber Campaign on highly oxidized multifunctional organic molecules and Aerosol (ACCHA). Here, we show how temperature influences the formation and chemical composition of α-pinene-derived SOA with a specific focus on the formation of organic acids and dimer esters. With respect to particle formation, results show significant increase in both particle formation rates, particle number concentrations and particle mass concentrations at lower temperatures. In particular, the number concentrations of sub-10 nm particles were significantly enhanced at the lower 0 and -15 °C temperatures. Temperatures also affect chemical composition of the formed SOA. Here, detailed off-line chemical analyses show organic acids contributing from 15 to 30 % by mass, with highest contributions observed at the lower temperatures indicative of enhanced condensation of these semi-volatile species. In comparison, 30 identified dimer esters contribute between 4–11 % to SOA mass. No significant differences in the chemical composition (i.e. organic acids and dimer esters) of the α-pinene-derived SOA particles are observed between experiments performed at 10 and 50 ppb initial α-pinene concentrations, thus suggesting a higher influence of reaction temperature compared to that of α-pinene loading on the SOA chemical composition. Interestingly, the effect of temperature on the formation of dimer esters differs between the individual species. The formation of less oxidized (oxygen-to-carbon ratio (O:C) < 0.4) dimer esters is shown to increase at lower temperatures while the formation of the more oxidized (O:C > 0.4) species is suppressed, consequently resulting in temperature-modulated composition of the α-pinene derived SOA. Temperature ramping experiments exposing α-pinene-derived SOA to changing temperatures (heating and cooling) reveal that the chemical composition of the SOA with respect to dimer esters is governed almost solely by the temperature during the initial oxidization and insusceptible to subsequent changes in temperature. Similarly, the resulting SOA mass concentrations were found to be more influenced by the initial α-pinene oxidation temperatures, thus suggesting that the formation conditions to a large extent govern the type of SOA formed, rather than the conditions to which the SOA is later exposed. For the first time, we discuss the relation between the identified dimer ester and the highly oxidized multifunctional organic molecules (HOMs) measured by Chemical Ionization Atmospheric Pressure interface Time-of-Flight mass spectrometer (CI-APi-TOF) during ACCHA experiments. We propose that, although very different in chemical structures and O:C-ratios, dimer esters and HOMs may be linked through the mechanism of RO2 autoxidation, and that dimer esters and HOMs merely represent two different fates of the RO2 radicals.


2018 ◽  
Author(s):  
Theodora Nah ◽  
Hongyu Guo ◽  
Amy P. Sullivan ◽  
Yunle Chen ◽  
David J. Tanner ◽  
...  

Abstract. The implementation of stringent emission regulations has resulted in the decline of anthropogenic pollutants including sulfur dioxide (SO2), nitrogen oxides (NOx) and carbon monoxide (CO). In contrast, ammonia (NH3) emissions are largely unregulated, with emissions projected to increase in the future. We present real-time aerosol and gas measurements from a field study conducted in an agricultural-intensive region in the southeastern U.S. during the fall of 2016 to investigate how NH3 affects particle acidity and SOA formation via the gas-particle partitioning of semi-volatile organic acids. Particle water and pH were determined using the ISORROPIA-II thermodynamic model and validated by comparing predicted inorganic HNO3-NO3− and NH3-NH4+ gas-particle partitioning ratios with measured values. Our results showed that despite the high NH3 concentrations (study average 8.1 ± 5.2 ppb), PM1 were highly acidic with pH values ranging from 0.9 to 3.8, and a study-averaged pH of 2.2 ± 0.6. PM1 pH varied by approximately 1.4 units diurnally. Formic and acetic acids were the most abundant gas-phase organic acids, and oxalate was the most abundant particle-phase water-soluble organic acid anion. Measured particle-phase water-soluble organic acids were on average 6 % of the total non-refractory PM1 organic aerosol mass. The measured molar fraction of oxalic acid in the particle phase (i.e., particle-phase oxalic acid molar concentration divided by the total oxalic acid molar concentration) ranged between 47 and 90 % for PM1 pH 1.2 to 3.4. The measured oxalic acid gas-particle partitioning ratios were in good agreement with their corresponding thermodynamic predictions, calculated based on oxalic acid’s physicochemical properties, ambient temperature, particle water and pH. In contrast, gas-particle partitioning of formic and acetic acids were not well predicted for reasons currently unknown. For this study, higher NH3 concentrations relative to what has been measured in the region in previous studies had minor effects on PM1 organic acids and their influence on the overall organic aerosol and PM1 mass concentrations.


2006 ◽  
Vol 110 (31) ◽  
pp. 9665-9690 ◽  
Author(s):  
Jason D. Surratt ◽  
Shane M. Murphy ◽  
Jesse H. Kroll ◽  
Nga L. Ng ◽  
Lea Hildebrandt ◽  
...  

2016 ◽  
Author(s):  
L. Li ◽  
P. Tang ◽  
S. Nakao ◽  
D. R. Cocker III

Abstract. The molecular structure of volatile organic compounds (VOC) determines their oxidation pathway, directly impacting secondary organic aerosol (SOA) formation. This study comprehensively investigates the impact of molecular structure on SOA formation from the photooxidation of twelve different eight to nine carbon aromatic hydrocarbons under low NOx conditions. The effects of the alkyl substitute number, location, carbon chain length and branching structure on the photooxidation of aromatic hydrocarbons are demonstrated by analyzing SOA yield, chemical composition and physical properties. Aromatic hydrocarbons, categorized into five groups, show a yield order of ortho (o-xylene and o-ethyltoluene) > one substitute (ethylbenzene, propylbenzene and isopropylbenzene) > meta (m-xylene and m-ethyltoluene) > three substitute (trimethylbenzenes) > para (p-xylene and p-ethyltoluene). SOA yields of aromatic hydrocarbon photooxidation do not monotonically decrease when increasing alkyl substitute number. The ortho position promotes SOA formation while the para position suppresses aromatic oxidation and SOA formation. Observed SOA chemical composition and volatility confirm that higher yield is associated with further oxidation. SOA chemical composition also suggests that aromatic oxidation increases with increasing alkyl substitute chain length and branching structure. Further, carbon dilution theory developed by Li et al. (2015a) is extended in this study to serve as a standard method to determine the extent of oxidation of an alkyl substituted aromatic hydrocarbon.


2011 ◽  
Vol 11 (8) ◽  
pp. 21789-21834
Author(s):  
R. H. Moore ◽  
R. Bahreini ◽  
C. A. Brock ◽  
K. D. Froyd ◽  
J. Cozic ◽  
...  

Abstract. We present a comprehensive characterization of cloud condensation nuclei (CCN) sampled in the Alaskan Arctic during the 2008 Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) project, a component of the POLARCAT and International Polar Year (IPY) initiatives. Four distinct air mass types were sampled including relatively pristine Arctic background conditions as well as biomass burning and anthropogenic pollution plumes. Despite differences in chemical composition, inferred aerosol hygroscopicities were fairly invariant and ranged from κ = 0.1–0.3 over the atmospherically-relevant range of water vapor supersaturations studied. Analysis of the individual mass spectral m/z 43 and 44 peaks from an aerosol mass spectrometer show the organic aerosols sampled to be well-oxygenated, consistent with with long-range transport and aerosol aging processes. However, inferred hygroscopicities are less than would be predicted based on previous parameterizations of biogenic oxygenated organic aerosol, suggesting an upper limit on organic aerosol hygroscopicity above which κ is less sensitive to the O:C ratio. Most Arctic aerosol act as CCN above 0.1 % supersaturation, although the data suggest the presence of an externally-mixed, non-CCN-active mode comprising approximately 0–20 % of the aerosol number. CCN closure was assessed using measured size distributions, bulk chemical composition measurements, and assumed aerosol mixing states; CCN predictions tended toward overprediction, with the best agreement (± 0–20 %) obtained by assuming the aerosol to be externally-mixed with soluble organics. Closure also varied with CCN concentration, and the best agreement was found for CCN concentrations above 100 cm−3 with a 1.5- to 3-fold overprediction at lower concentrations.


2016 ◽  
Vol 50 (10) ◽  
pp. 4997-5006 ◽  
Author(s):  
Rebecca M. Harvey ◽  
Adam P. Bateman ◽  
Shashank Jain ◽  
Yong Jie Li ◽  
Scot Martin ◽  
...  

2017 ◽  
Author(s):  
Julia Montoya ◽  
Jeremy R. Horne ◽  
Mallory L. Hinks ◽  
Lauren T. Fleming ◽  
Veronique Perraud ◽  
...  

Abstract. Indole is a heterocyclic compound emitted by various plant species under stressed conditions or during flowering events. The formation, optical properties, and chemical composition of secondary organic aerosol (SOA) formed by low-NOx photooxidation of indole were investigated. The SOA yield (1.1 ± 0.3) was estimated from measuring the particle mass concentration with a scanning mobility particle sizer (SMPS) and correcting it for the wall loss effects. The SOA particles were collected on filters and analysed offline with UV-Vis spectrophotometry to measure the mass absorption coefficient (MAC) of the bulk sample. The samples were visibly brown and had MAC values of ~7 m2/g at λ = 300 nm and ~2 m2/g at λ = 400 nm, comparable to strongly absorbing brown carbon emitted from biomass burning. The chemical composition of SOA was examined with several mass spectrometry methods. The direct analysis in real time mass spectrometry (DART-MS) and nanospray desorption electrospray high resolution mass spectrometry (nano-DESI-HRMS) were used to provide information about the overall distribution of SOA compounds. High performance liquid chromatography, coupled to photodiode array spectrophotometry and high resolution mass spectrometry (HPLC-PDA-HRMS) was used to identify chromophoric compounds. Indole derivatives, such as tryptanthrin, indirubin, indigo dye, and indoxyl red were found to contribute significantly to the visible absorption spectrum of indole SOA. The potential effect of indole SOA on air quality was explored with the airshed model, which found elevated concentrations of indole SOA during the afternoon hours contributing considerably to the total organic aerosol under selected scenarios. Because of its high MAC values, indole SOA can contribute to decreased visibility and poor air quality.


2010 ◽  
Vol 10 (21) ◽  
pp. 10521-10539 ◽  
Author(s):  
Y. B. Lim ◽  
Y. Tan ◽  
M. J. Perri ◽  
S. P. Seitzinger ◽  
B. J. Turpin

Abstract. There is a growing understanding that secondary organic aerosol (SOA) can form through reactions in atmospheric waters (i.e., clouds, fogs, and aerosol water). In clouds and wet aerosols, water-soluble organic products of gas-phase photochemistry dissolve into the aqueous phase where they can react further (e.g., with OH radicals) to form low volatility products that are largely retained in the particle phase. Organic acids, oligomers and other products form via radical and non-radical reactions, including hemiacetal formation during droplet evaporation, acid/base catalysis, and reaction of organics with other constituents (e.g., NH4+). This paper provides an overview of SOA formation through aqueous chemistry, including atmospheric evidence for this process and a review of radical and non-radical chemistry, using glyoxal as a model precursor. Previously unreported analyses and new kinetic modeling are reported herein to support the discussion of radical chemistry. Results suggest that reactions with OH radicals tend to be faster and form more SOA than non-radical reactions. In clouds these reactions yield organic acids, whereas in wet aerosols they yield large multifunctional humic-like substances formed via radical-radical reactions and their O/C ratios are near 1.


Sign in / Sign up

Export Citation Format

Share Document