effective saturation
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 9)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Joel Schneider ◽  
Camila de Paula ◽  
Jacqueline Lewis ◽  
Jacob Woodruff ◽  
James Raiford ◽  
...  

Achieving facile nucleation of noble metal films through atomic layer deposition (ALD) is extremely challenging. To this end, η4-2,3-dimethylbutadiene ruthenium tricarbonyl (Ru(DMBD)(CO)3), a zero-valent complex, has recently been reported to achieve good nucleation by ALD at relatively low temperatures and mild reaction conditions. We study the growth mechanism of this precursor by in situ quartz-crystal microbalance and quadrupole mass spectrometry during Ru ALD, complemented by ex situ film characterization and kinetic modeling. These studies reveal that Ru(DMBD)(CO)3 produces high-quality Ru films with excellent nucleation properties. This results in smooth, coalesced films even at low film thicknesses, all important traits for device applications. However, Ru deposition follows a kinetically limited decarbonylation reaction scheme, akin to typical CVD processes, with a strong dependence on both temperature and reaction timescale. The non-self-limiting nature of the kinetically driven mechanism presents both challenges for ALD implementation and opportunities for process tuning. By surveying reports of similar precursors, we suggest that the findings can be generalized to the broader class of zero-oxidation state carbonyl-based precursors used in thermal ALD, with insight into the design of effective saturation studies.


2021 ◽  
Author(s):  
Aristeidis Voliotis ◽  
Yu Wang ◽  
Yunqi Shao ◽  
Mao Du ◽  
Thomas J. Bannan ◽  
...  

Abstract. Secondary organic aerosol (SOA) formation from mixtures of volatile precursors may be influenced by the molecular interactions of the products of the components of the mixture. Here, we report measurements of the volatility distribution of SOA formed from the photo-oxidation o-cresol, α-pinene and their mixtures, representative anthropogenic and biogenic precursors, in an atmospheric simulation chamber. The combination of two independent thermal techniques (thermal denuder and the Filter Inlet for Gases and Aerosols coupled to a high resolution time of flight chemical ionisation mass spectrometer) to measure the particle volatility, along with detailed gas and particle phase composition measurements provides links between the chemical composition of the mixture and the resultant SOA volatility. The products that were only present in the SOA of the mixture had higher O:C and lower volatility compared to those deriving from the individual precursors. This suggests that new product formation can reduce the volatility in mixtures. At the same time, some of the larger molecules with lower volatility produced in the single α-pinene and o-cresol system were not present in the mixture leading to an increase of the average volatility. These opposite effects resulted the volatility distribution of the SOA of the mixture to be between those of the individual precursors. For example, compounds with effective saturation concentration less or equal than 0.01 μg m−3 represented 28, 39 and 37 % of the SOA mass in the α-pinene, o-cresol and mixed precursor experiments, respectively. We further explore the sensitivity limitations of our technique to the reported results and we show that the particle volatility can be qualitatively assessed, while caution should be held when linking the chemical composition to the particle volatility. These results provide the first detailed observations of SOA particle volatility and composition in mixed anthropogenic and biogenic systems and provides an analytical context that can be used to explore particle volatility in chamber experiments.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Chang Liu ◽  
Fuguo Tong ◽  
Long Yan ◽  
Hongbo Zhou ◽  
Shuang Hao

Porosity change is a common characteristic of natural soils in fluid-solid interaction problems, which can lead to an obvious change of the soil-water retention curve (SWRC). The influence of porosity on soil water retention phenomena is investigated by a theoretical model and an experimental test in this study. A model expressing the change in suction with porosity and effective saturation is put forward theoretically. The model is based on an idealization of three-phase porous materials, the pore structures of which are homogeneous and isotropic. It accounts for the porosity effect on soil water retention, using four parameters with clear physical meanings. The presented model can obtain the SWRC at any porosity, which will reduce the test number required in characterizing the hydraulic behavior of soil. A laboratory experiment for loamy sand with different porosities is performed. The test results show that suction has a significant variation with changes in porosity and decreases with the increase of porosity. The formulation is verified by both the test data and the literature data for FEBEX bentonite and Boom clay. The very good agreements between measured and predicted results show that the SWRC model is reliable and feasible for various soils.


2020 ◽  
Author(s):  
Weiqi Xu ◽  
Chun Chen ◽  
Yanmei Qiu ◽  
Ying Li ◽  
Zhiqiang Zhang ◽  
...  

Abstract. Volatility and viscosity have substantial impacts on gas-particle partitioning, formation and evolution of aerosol, and hence the predictions of aerosol related air quality and climate effects. Here aerosol volatility and viscosity at a rural site (Gucheng) and an urban site (Beijing) in North China Plain (NCP) in summer and winter were investigated by using a thermodenuder coupled with high resolution aerosol mass spectrometer. The effective saturation concentration (C*) of organic aerosol (OA) in summer was smaller than that in winter (0.55 μg m−3 vs. 0.71–0.75 μg m−3), indicating that OA in winter in NCP is more volatile due to enhanced primary emissions from coal combustion and biomass burning. The volatility distributions varied largely different among different OA factors. In particular, we found that hydrocarbon-like OA (HOA) contained more non-volatile compounds compared to coal combustion related OA. The more oxidized oxygenated OA (MO-OOA) showed overall lower volatility than less oxidized OOA (LO-OOA) in both summer and winter, yet the volatility of MO-OOA was found to be relative humidity (RH) dependent showing more volatile properties at higher RH. Our results demonstrated the different composition and chemical formation pathways of MO-OOA under different RH levels. The glass transition temperature (Tg) and viscosity of OA in summer and winter are estimated using the recently developed parameterization formula. Our results showed that the Tg of OA in summer in Beijing (291.5 K) was higher than that in winter (289.7–290.0 K), while it varied greatly among different OA factors. The viscosity suggested that OA existed mainly as solid in winter in Beijing, but as semi-solids in Beijing in summer and Gucheng in winter. These results have important implications that kinetically limited gas-particle partitioning may need to be considered when simulating secondary OA formation in NCP.


2020 ◽  
Vol 582 ◽  
pp. 124445
Author(s):  
Yi-Zhih Tsai ◽  
Ming-Liang Cheng ◽  
Qun-Zhan Huang ◽  
Wei-Cheng Lo ◽  
Ming-Hsu Li ◽  
...  

2020 ◽  
Vol 10 (513) ◽  
pp. 434-442
Author(s):  
Y. I. Shevchenko ◽  

Competitiveness of enterprises in the international market of goods and services is one of the main trends in the development of the world economy. In order to preserve and strengthen their competitive advantages, transnational corporations (TNC) are forced to reconsider sometimes conservative approaches to the development and implementation of marketing strategies. The article is aimed at studying the theoretical and practical aspects of the formation of TNC marketing strategies, analyzing the factors that influence the choice and substantiation of these strategies in the context of uncertainty of the global environment. TNC do not use only global or transnational marketing strategy. For the most part, compromise approaches prevail, which can be conventionally defined as standardized adaptation. Reducing the product life cycle (PLC), the use of synchronous expansion of national markets provide TNC leadership on a global scale. Finding the best time to enter foreign markets, rationalizing of marketing strategies and prioritizing the use of marketing mix tools at each stage of the international life cycle is the key to the success of TNC in the competitive struggle for international and national markets. For all TNC, the problem of marketing strategy efficiency remains the main one. Each company experiences a discussion on global and adaptive strategy in different periods of its life cycle. The combination of global thinking and local implementation according to the needs of the market, building a new level of relationships with partner (manufacturer, supplier, consumer, etc.), business processes management and integration of management functions with effective saturation with digital solutions and innovations is not an easy but effective formula for the success of TNC marketing strategies.


2019 ◽  
Vol 22 (2) ◽  
pp. 423-439
Author(s):  
Mohanasundaram Shanmugam ◽  
G. Suresh Kumar ◽  
Balaji Narasimhan ◽  
Sangam Shrestha

Abstract Richards equation is solved for soil water flow modeling in the unsaturated zone continuum. Interblock hydraulic conductivities, while solving for Richards equation, are estimated by some sort of averaging process based on upstream and downstream nodes hydraulic conductivity values. The accuracy of the interblock hydraulic conductivity estimation methods mainly depends on the distance between two adjacent discretized nodes. In general, the accuracy of the numerical solution of the Richards equation decreases as nodal grid discretization increases. Conventional interblock hydraulic conductivity estimation methods are mostly mere approximation approaches while the Darcian-based interblock hydraulic conductivities involve complex calculations and require intensive computation under different flow regimes. Therefore, in this study, we proposed an effective saturation-based weighting approach in the soil hydraulic curve functions for estimating interblock hydraulic conductivity using a one-dimensional vertical finite-difference model which provides a parametric basis for interblock hydraulic conductivity estimation while reducing complexity in the calculation and computational processes. Furthermore, we compared four test case simulation results from different interblock hydraulic conductivity methods with the reference solutions. The comparison results show that the proposed method performance in terms of percentage reduction in root mean square and mean absolute error over other methods compared in this study were 59.5 and 60%, respectively.


2019 ◽  
Vol 19 (15) ◽  
pp. 10205-10216 ◽  
Author(s):  
Weiqi Xu ◽  
Conghui Xie ◽  
Eleni Karnezi ◽  
Qi Zhang ◽  
Junfeng Wang ◽  
...  

Abstract. Volatility plays a key role in affecting mass concentrations and the lifetime of aerosol particles in the atmosphere, yet our knowledge of aerosol volatility in relatively polluted environment, e.g., north China, remains poor. Here aerosol volatility in Beijing in summer 2017 and 2018 was measured using a thermodenuder (TD) coupled with an Aerodyne high-resolution aerosol mass spectrometer (AMS) and a soot particle AMS. Our results showed overall similar thermograms for most non-refractory aerosol species compared with those reported in previous studies. However, high mass fraction remaining and NO+/NO2+ ratio for chloride and nitrate, each above 200 ∘C, indicated the presence of considerable metallic salts and organic nitrates in Beijing. The volatility distributions of organic aerosol (OA) and four OA factors that were resolved from positive matrix factorization were estimated using a mass transfer model. The ambient OA comprised mainly semi-volatile organic compounds (SVOCs; 63 %) with an average effective saturation concentration (C*) of 0.55 µg m−3, suggesting overall more volatile properties than OA in megacities of Europe and the US. Further analysis showed that the freshly oxidized secondary OA was the most volatile OA factor (SVOC = 70 %) followed by hydrocarbon-like OA (HOA). In contrast, the volatility of more oxidized oxygenated OA (MO-OOA) was comparable to that of cooking OA with SVOC on average accounting for 60.2 %. We also compared the volatility of ambient and black-carbon-containing OA. Our results showed that the BC-containing primary OA (POA) was much more volatile than ambient POA (C*=0.69 µg m−3 vs. 0.37 µg m−3), while the BC-containing SOA was much less volatile, highlighting the very different composition and properties between BC-containing and ambient aerosol particles.


2019 ◽  
Author(s):  
Weiqi Xu ◽  
Conghui Xie ◽  
Eleni Karnezi ◽  
Qi Zhang ◽  
Junfeng Wang ◽  
...  

Abstract. Volatility plays a key role in affecting mass concentrations and lifetime of aerosol particles in the atmosphere, yet our knowledge of aerosol volatility in relatively polluted environment, e.g., north China remains poor. Here aerosol volatility in Beijing in summer 2017 and 2018 was measured using a thermodenuder (TD) coupled with an Aerodyne high-resolution aerosol mass spectrometer (AMS) and a soot particle AMS. Our results showed overall similar thermograms for most non-refractory aerosol species compared with those reported in previous studies. However, high mass fraction remaining and NO+/NO2+ ratio for chloride and nitrate, respectively above 200 °C indicated the presence of considerable metallic salts and organic nitrates in Beijing. The volatility distributions of organic aerosol (OA) and four OA factors that were resolved from positive matrix factorization were estimated using a mass transfer model. The ambient OA comprised mainly semi-volatile organic compounds (SVOC, 63 %) with an average effective saturation concentration (C*) of 0.55 µg m−3, suggesting overall more volatile properties than OA in megacities of Europe and US. Further analysis showed that the freshly oxidized secondary OA (LO-OOA) was the most volatile OA factor (SVOC = 70 %) followed by hydrocarbon-like OA (HOA). In contrast, the volatility of more oxidized SOA (MO-OOA) was comparable to that of cooking OA with SVOC on average accounting for 60.2 %. We also compared the volatility of ambient and black carbon–containing OA. Our results showed that the BC-containing primary OA (POA) was much more volatile than ambient POA (C*= 0.69 µg m−3 vs. 0.37 µg m−3), while the BC-containing SOA was much less volatile, highlighting the very different composition and properties between BC-containing and ambient aerosol particles.


Sign in / Sign up

Export Citation Format

Share Document