scholarly journals Evaluation of modeled summertime convective storms using polarimetric radar observations

2021 ◽  
Author(s):  
Prabhakar Shrestha ◽  
Silke Trömel ◽  
Raquel Evaristo ◽  
Clemens Simmer

Abstract. Ensemble simulations were conducted for three summertime convective storms over a temperate region in northwestern Germany using the Terrestrial Systems Modeling Platform (TSMP). The simulated microphysical processes were evaluated with polarimetric observations from two X-band radars, with the help of a forward operator applied to the model data. TSMP was found to generally underestimate the convective area fraction, high reflectivities, and the width/magnitude of so-called differential reflectivity (ZDR) columns indicative of updrafts, all leading to an underestimation of the frequency distribution for high precipitation values. The statistical distributions of ZDR and specific differential phase (KDP) were however similar, while the cross-correlation coefficient (phv) was poorly simulated, probably due to little variability of assumed hydrometeor shapes and orientations in the forward operator. The observed model bias in the ZDR columns could be associated with small size of supercooled raindrops and poorly resolved three dimensional flow at km-scale simulations, besides the treatment of freezing process in the model, which warrants further research.

2017 ◽  
Vol 56 (7) ◽  
pp. 2001-2026 ◽  
Author(s):  
Jeffrey C. Snyder ◽  
Howard B. Bluestein ◽  
Daniel T. Dawson II ◽  
Youngsun Jung

AbstractA high-resolution numerical model and polarimetric forward operator allow one to examine simulated convective storms from the perspective of observable polarimetric radar quantities, enabling a better comparison of modeled and observed deep moist convection. Part I of this two-part study described the model and forward operator used for all simulations and examined the structure and evolution of rings of reduced copolar cross-correlation coefficient (i.e., ρhv rings). The microphysical structure of upward extensions of enhanced differential reflectivity (ZDR columns and ZDR rings) and enhanced specific differential phase (KDP columns) near and within the updrafts of convective storms serve as the focus of this paper. In general, simulated ZDR columns are located immediately west of the midlevel updraft maximum and are associated with rainwater lofted above the 0°C level and wet hail/graupel, whereas ZDR rings are associated with wet hail located near and immediately east of the midlevel updraft maximum. The deepest areas of ZDR > 1 dB aloft are associated with supercells in the highest shear environments and those that have the most intense updrafts; the upper extent of the ZDR signatures is found to be positively correlated with the amount and mean-mass diameter of large hail aloft likely as a by-product of the shared correlations with updraft intensity and wind shear. Large quantities of rain compose the KDP columns, with the size and intensity of the updrafts directly proportional to the size and depth of the KDP columns.


2017 ◽  
Vol 56 (7) ◽  
pp. 1977-1999 ◽  
Author(s):  
Jeffrey C. Snyder ◽  
Howard B. Bluestein ◽  
Daniel T. Dawson II ◽  
Youngsun Jung

AbstractWith the development of multimoment bulk microphysical schemes and polarimetric radar forward operators, one can better examine convective storms simulated in high-resolution numerical models from a simulated polarimetric radar perspective. Subsequently, relationships between observable and unobservable quantities can be examined that may provide useful information about storm intensity and organization that otherwise would be difficult to obtain. This paper, Part I of a two-part sequence, describes the bulk microphysics scheme, polarimetric radar forward operator, and numerical model configuration used to simulate supercells in eight idealized, horizontally homogenous environments with different wind profiles. The microphysical structure and evolution of copolar cross-correlation coefficient (ρhv) rings associated with simulated supercells are examined in Part I, whereas Part II examines ZDR columns, ZDR rings, and KDP columns. In both papers, some systematic differences between the signature seen at X and S bands are discussed. The presence of hail is found to affect ρhv much more at X band than at S band (and is found to affect ZDR more at S band than at X band), which corroborates observations. The ρhv half ring is found to be associated with the presence of large, sometimes wet, hail aloft, with an ~20-min time lag between increases in the size of the ρhv ring aloft and the occurrence of a large amount of hail near the ground in some simulations.


2016 ◽  
Vol 33 (3) ◽  
pp. 551-562 ◽  
Author(s):  
Alexander Ryzhkov ◽  
Pengfei Zhang ◽  
Heather Reeves ◽  
Matthew Kumjian ◽  
Timo Tschallener ◽  
...  

AbstractA novel methodology is introduced for processing and presenting polarimetric data collected by weather surveillance radars. It involves azimuthal averaging of radar reflectivity Z, differential reflectivity ZDR, cross-correlation coefficient ρhv, and differential phase ΦDP at high antenna elevation, and presenting resulting quasi-vertical profiles (QVPs) in a height-versus-time format. Multiple examples of QVPs retrieved from the data collected by S-, C-, and X-band dual-polarization radars at elevations ranging from 6.4° to 28° illustrate advantages of the QVP technique. The benefits include an ability to examine the temporal evolution of microphysical processes governing precipitation production and to compare polarimetric data obtained from the scanning surveillance weather radars with observations made by vertically looking remote sensors, such as wind profilers, lidars, radiometers, cloud radars, and radars operating on spaceborne and airborne platforms. Continuous monitoring of the melting layer and the layer of dendritic growth with high vertical resolution, and the possible opportunity to discriminate between the processes of snow aggregation and riming, constitute other potential benefits of the suggested methodology.


2012 ◽  
Vol 140 (7) ◽  
pp. 2147-2167 ◽  
Author(s):  
Xuanli Li ◽  
John R. Mecikalski

Abstract The dual-polarization (dual pol) Doppler radar can transmit/receive both horizontally and vertically polarized power returns. The dual-pol radar measurements have been shown to provide a more accurate precipitation estimate compared to traditional radars. In this study, the horizontal reflectivity ZH, differential reflectivity ZDR, specific differential phase KDP, and radial velocity VR collected by the C-band Advanced Radar for Meteorological and Operational Research (ARMOR) are assimilated for two convective storms. A warm-rain scheme is constructed to assimilate ZH, ZDR, and KDP data using the three-dimensional variational data assimilation (3DVAR) system with the Advanced Research Weather Research and Forecasting Model (ARW-WRF). The main goals of this study are first to demonstrate and compare the impact of various dual-pol variables in initialization of real case convective storms and second to test how the dual-pol fields may be better used with a 3DVAR system. The results show that the ZH, ZDR, KDP, and VR data substantially improve the initial condition for two mesoscale convective storms. Significant positive impacts on short-term forecast are obtained for both storms. Additionally, KDP and ZDR data assimilation is shown to be superior to ZH and ZDR and ZH-only data assimilation when the warm-rain microphysics is adopted. With the ongoing upgrade of the current Weather Surveillance Radar-1988 Doppler (WSR-88D) network to include dual-pol capabilities (started in early 2011), the findings from this study can be a helpful reference for utilizing the dual-pol radar data in numerical simulations of severe weather and related quantitative precipitation forecasts.


2009 ◽  
Vol 66 (3) ◽  
pp. 667-685 ◽  
Author(s):  
Matthew R. Kumjian ◽  
Alexander V. Ryzhkov

Abstract The dual-polarization radar variables are especially sensitive to the microphysical processes of melting and size sorting of precipitation particles. In deep convective storms, polarimetric measurements of such processes can provide information about the airflow in and around the storm that may be used to elucidate storm behavior and evolution. Size sorting mechanisms include differential sedimentation, vertical transport, strong rotation, and wind shear. In particular, winds that veer with increasing height typical of supercell environments cause size sorting that is manifested as an enhancement of differential reflectivity (ZDR) along the right or inflow edge of the forward-flank downdraft precipitation echo, which has been called the ZDR arc signature. In some cases, this shear profile can be augmented by the storm inflow. It is argued that the magnitude of this enhancement is related to the low-level storm-relative environmental helicity (SRH) in the storm inflow. To test this hypothesis, a simple numerical model is constructed that calculates trajectories for raindrops based on their individual sizes, which allows size sorting to occur. The modeling results indicate a strong positive correlation between the maximum ZDR in the arc signature and the low-level SRH, regardless of the initial drop size distribution aloft. Additional observational evidence in support of the conceptual model is presented. Potential changes in the ZDR arc signature as the supercell evolves and the low-level mesocyclone occludes are described.


Author(s):  
Ricardo Reinoso-Rondinel ◽  
Marc Schleiss

AbstractConventionally, micro rain radars (MRRs) have been used as a tool to calibrate reflectivity from weather radars, estimate the relation between rainfall rate and reflectivity, and study microphysical processes in precipitation. However, limited attention has been given to the reliability of the retrieved drop size distributions DSDs from MRRs. This study sheds more light on this aspect by examining the sensitivity of retrieved DSDs to the assumptions made to map Doppler spectra into size distributions, and investigates the capability of an MRR to assess polarimetric observations from operational weather radars. For that, an MRR was installed near the Cabauw observatory in the Netherlands, between the IDRA X-band radar and the Herwijnen operational C-band radar. The measurements of the MRR from November 2018 to February 2019 were used to retrieve DSDs and simulate horizontal reflectivity Ze, differential reflectivity ZDR, and specific differential phase KDP in rain. Attention is given to the impact of aliased spectra and right-hand side truncation on the simulation of polarimetric variables. From a quantitative assessment, the correlations of Ze and ZDR between the MRR and Herwijnen radar were 0.93 and 0.70, respectively, while those between the MRR and IDRA were 0.91 and 0.69. However, Ze and ZDR from the Herwijnen radar showed slight biases of 1.07 and 0.25 dB. For IDRA, the corresponding biases were 2.67 and -0.93 dB. Our results show that MRR measurements are advantageous to inspect the calibration of scanning radars and validate polarimetric estimates in rain, provided that the DSDs are correctly retrieved and controlled for quality assurance.


2016 ◽  
Vol 55 (2) ◽  
pp. 403-424 ◽  
Author(s):  
Mariko Oue ◽  
Michele Galletti ◽  
Johannes Verlinde ◽  
Alexander Ryzhkov ◽  
Yinghui Lu

AbstractMicrophysical processes in shallow Arctic precipitation clouds are illustrated using measurements of differential reflectivity ZDR from the U.S. Department of Energy Atmospheric Radiation Measurement Program polarimetric X-band radar deployed in Barrow, Alaska. X-band hemispheric range height indicator scans used in conjunction with Ka-band radar and lidar measurements revealed prolonged periods dominated by vapor depositional, riming, and/or aggregation growth. In each case, ice precipitation fell through at least one liquid-cloud layer in a seeder–feeder situation before reaching the surface. A long period of sustained low radar reflectivity ZH (<0–5 dBZ) and high ZDR (6–7.5 dB) throughout the depth of the cloud and subcloud layer, coinciding with observations of large pristine dendrites at the surface, suggests vapor depositional growth of large dendrites at low number concentrations. In contrast, ZDR values decreased to 2–3 dB in the mean profile when surface precipitation was dominated by aggregates or rimed dendrites. Small but consistent differences in zenith Ka-band radar Doppler velocity and lidar depolarization measurements were found between aggregation- and riming-dominated periods. The clean Arctic environment can enhance ZDR signals relative to more complex midlatitude cases, producing higher values.


Sign in / Sign up

Export Citation Format

Share Document