Impact of stratospheric aerosol intervention geoengineering on surface air temperature in China: A surface energy budget perspective
Abstract. Stratospheric aerosol intervention (SAI) geoengineering is a rapid, effective, and promising means to counteract anthropogenic global warming, but the climate response to SAI, with great regional disparities, remains uncertain. In this study, we use Geoengineering Model Intercomparison Project G4 experiment simulations from three models (HadGEM2-ES, MIROC-ESM, and MIROC-ESM-CHEM) that offset anthropogenic forcing under medium-low emissions (RCP4.5) by injecting a certain amount of SO2 into the stratosphere every year, to investigate the surface air temperature response to SAI geoengineering over China. It has been shown that the SAI leads to surface cooling over China over the last 40 years of injection simulation (2030–2069), which varies among models, regions and seasons. The spatial pattern of SAI-induced temperature changes over China is mainly due to net surface shortwave radiation changes. We find that changes in solar radiation modification strength, surface albedo, atmospheric water vapor and cloudiness affect surface shortwave radiation. In summer, the increased cloud cover in some regions reduces net surface shortwave radiation, causing strong surface cooling. In winter, both the strong cooling in all three models and the abnormal warming in MIROC-ESM are related to surface albedo changes. Our results suggest that cloud and land surface processes in models may dominate the spatial pattern of SAI-induced surface air temperature changes over China.