scholarly journals Chemical composition of nanoparticles from α-pinene nucleation and the influence of isoprene and relative humidity at low temperature

2021 ◽  
Author(s):  
Lucía Caudillo ◽  
Birte Rörup ◽  
Martin Heinritzi ◽  
Guillaume Marie ◽  
Mario Simon ◽  
...  

Abstract. New Particle Formation (NPF) from biogenic organic precursors is an important atmospheric process. One of the major species is α-pinene, which upon oxidation, can form a suite of products covering a wide range of volatilities. A fraction of the oxidation products is termed Highly Oxygenated Organic Molecules (HOM). These play a crucial role for nucleation and the formation of Secondary Organic Aerosol (SOA). However, measuring the composition of newly formed particles is challenging due to their very small mass. Here, we present results on the gas and particle phase chemical composition for a system where α-pinene was oxidized by ozone, and for a mixed system of α-pinene and isoprene, respectively. The measurements took place at the CERN Cosmics Leaving Outdoor Droplets (CLOUD) chamber at temperatures between −50 °C and −30 °C and at low and high relative humidity (20 % and 60 to 100 % RH). These conditions were chosen to simulate pure biogenic new particle formation in the upper free troposphere. The particle chemical composition was analyzed by the Thermal Desorption-Differential Mobility Analyzer (TD-DMA) coupled to a nitrate chemical ionization time-of-flight mass spectrometer. This instrument can be used for particle and gas phase measurements using the same ionization and detection scheme. Our measurements revealed the presence of C8-10 monomers and C18-20 dimers as the major compounds in the particles (diameter up to ~ 100 nm). Particularly, for the system with isoprene added, C5 (C5H10O5-7) and C15 compounds (C15H24O5-10) are detected. This observation is consistent with the previously observed formation of such compounds in the gas phase. However, although the C5 and C15 compounds do not easily nucleate, our measurements indicate that they can still contribute to the particle growth at free tropospheric conditions. For the experiments reported here, most likely isoprene might enhance growth at particle sizes larger than 15 nm. Besides the chemical information regarding the HOM formation for the α-pinene (plus isoprene) system, we report on the nucleation rates measured at 1.7 nm and found that the lower J1.7nm values compared with previous studies are very likely due to the higher α-pinene and ozone mixing ratios used in the present study

2021 ◽  
Vol 21 (22) ◽  
pp. 17099-17114
Author(s):  
Lucía Caudillo ◽  
Birte Rörup ◽  
Martin Heinritzi ◽  
Guillaume Marie ◽  
Mario Simon ◽  
...  

Abstract. Biogenic organic precursors play an important role in atmospheric new particle formation (NPF). One of the major precursor species is α-pinene, which upon oxidation can form a suite of products covering a wide range of volatilities. Highly oxygenated organic molecules (HOMs) comprise a fraction of the oxidation products formed. While it is known that HOMs contribute to secondary organic aerosol (SOA) formation, including NPF, they have not been well studied in newly formed particles due to their very low mass concentrations. Here we present gas- and particle-phase chemical composition data from experimental studies of α-pinene oxidation, including in the presence of isoprene, at temperatures (−50 and −30 ∘C) and relative humidities (20 % and 60 %) relevant in the upper free troposphere. The measurements took place at the CERN Cosmics Leaving Outdoor Droplets (CLOUD) chamber. The particle chemical composition was analyzed by a thermal desorption differential mobility analyzer (TD-DMA) coupled to a nitrate chemical ionization–atmospheric pressure interface–time-of-flight (CI-APi-TOF) mass spectrometer. CI-APi-TOF was used for particle- and gas-phase measurements, applying the same ionization and detection scheme. Our measurements revealed the presence of C8−10 monomers and C18−20 dimers as the major compounds in the particles (diameter up to ∼ 100 nm). Particularly, for the system with isoprene added, C5 (C5H10O5−7) and C15 compounds (C15H24O5−10) were detected. This observation is consistent with the previously observed formation of such compounds in the gas phase. However, although the C5 and C15 compounds do not easily nucleate, our measurements indicate that they can still contribute to the particle growth at free tropospheric conditions. For the experiments reported here, most likely isoprene oxidation products enhance the growth of particles larger than 15 nm. Additionally, we report on the nucleation rates measured at 1.7 nm (J1.7 nm) and compared with previous studies, we found lower J1.7 nm values, very likely due to the higher α-pinene and ozone mixing ratios used in the present study.


2008 ◽  
Vol 8 (10) ◽  
pp. 2657-2665 ◽  
Author(s):  
A. Laaksonen ◽  
M. Kulmala ◽  
C. D. O'Dowd ◽  
J. Joutsensaari ◽  
P. Vaattovaara ◽  
...  

Abstract. Aerosol physical and chemical properties and trace gas concentrations were measured during the QUEST field campaign in March–April 2003, in Hyytiälä, Finland. Our aim was to understand the role of oxidation products of VOC's such as mono- and sesquiterpenes in atmospheric nucleation events. Particle chemical compositions were measured using the Aerodyne Aerosol Mass Spectrometer, and chemical compositions of aerosol samples collected with low-pressure impactors and a high volume sampler were analysed using a number of techniques. The results indicate that during and after new particle formation, all particles larger than 50 nm in diameter contained similar organic substances that are likely to be mono- and sesquiterpene oxidation products. The oxidation products identified in the high volume samples were shown to be mostly aldehydes. In order to study the composition of particles in the 10–50 nm range, we made use of Tandem Differential Mobility Analyzer results. We found that during nucleation events, both 10 and 50 nm particle growth factors due to uptake of ethanol vapour correlate strongly with gas-phase monoterpene oxidation product (MTOP) concentrations, indicating that the organic constituents of particles smaller than 50 nm in diameter are at least partly similar to those of larger particles. We furthermore showed that particle growth rates during the nucleation events are correlated with the gas-phase MTOP concentrations. This indicates that VOC oxidation products may have a key role in determining the spatial and temporal features of the nucleation events. This conclusion was supported by our aircraft measurements of new 3–10 nm particle concentrations, which showed that the nucleation event on 28 March 2003, started at the ground layer, i.e. near the VOC source, and evolved together with the mixed layer. Furthermore, no new particle formation was detected upwind away from the forest, above the frozen Gulf of Bothnia.


2020 ◽  
Author(s):  
Mario Simon ◽  
Lubna Dada ◽  
Martin Heinritzi ◽  
Wiebke Scholz ◽  
Dominik Stolzenburg ◽  
...  

Abstract. Highly-oxygenated organic molecules (HOMs) contribute substantially to the formation and growth of atmospheric aerosol particles, which affect air quality, human health and Earth's climate. HOMs are formed by rapid, gas-phase autoxidation of volatile organic compounds (VOCs) such as α-pinene, the most abundant monoterpene in the atmosphere. Due to their abundance and low volatility, HOMs can play an important role for new-particle formation (NPF) and the early growth of atmospheric aerosols, even without any further assistance of other low-volatility compounds such as sulfuric acid. Both the autoxidation reaction forming HOMs and their new-particle formation rates are expected to be strongly dependent on temperature. However, experimental data on both effects are limited. Dedicated experiments were performed at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN to address this question. In this study, we show that a decrease in temperature (from +25 to −50 °C) results in a reduced HOM yield and reduced oxidation state of the products, whereas the new-particle formation rates (J1.7 nm) increase substantially. Measurements with two different chemical ionization mass spectrometers (using nitrate and protonated water as reagent ion, respectively) provide the molecular composition of the gaseous oxidation products and a 2-dimensional volatility basis set model (2D-VBS) provides their volatility distribution. The HOM yield decreases with temperature from 6.2 % at 25 °C to 0.7 % at −50 °C. However, there is a strong reduction of the saturation vapor pressure of each oxidation state as the temperature is reduced. Overall, the reduction in volatility with temperature leads to an increase in the nucleation rates by up to three orders of magnitude at −50 °C compared with 25 °C. In addition, the enhancement of the nucleation rates by ions decreases with decreasing temperature, since the neutral molecular clusters have increased stability against evaporation. The resulting data quantify how the interplay between the temperature-dependent oxidation pathways and the associated vapor pressures affect biogenic new-particle formation at the molecular level. Our measurements therefore improve our understanding of pure biogenic new-particle formation for a wide range of tropospheric temperatures and precursor concentrations.


2014 ◽  
Vol 14 (9) ◽  
pp. 13413-13464 ◽  
Author(s):  
S. Schobesberger ◽  
A. Franchin ◽  
F. Bianchi ◽  
L. Rondo ◽  
J. Duplissy ◽  
...  

Abstract. The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia (NH3) and sulfuric acid (H2SO4). Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small NH3-H2SO4 clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from <2 to 1400 pptv, [H2SO4] from 3.3 × 106 to 1.4 × 109 cm−3, and a temperature range from −25 to +20 °C. Negatively and positively charged clusters were directly measured by an atmospheric pressure interface time-of-flight (APi-TOF) mass spectrometer, as they initially formed from gas-phase NH3 and H2SO4, and then grew to larger clusters containing more than 50 molecules of NH3 and H2SO4, corresponding to mobility-equivalent diameters greater than 2 nm. Water molecules evaporate from these clusters during sampling and are not observed. We found that the composition of the NH3-H2SO4 clusters is primarily determined by the ratio of gas-phase concentrations [NH3] / [H2SO4], as well as by temperature. Pure binary H2O-H2SO4 clusters (observed as clusters of only H2SO4) only form at [NH3] / [H2SO4]<0.1 to 1. For larger values of [NH3] / [H2SO4], the composition of NH3-H2SO4 clusters was characterized by the number of NH3 molecules m added for each added H2SO4 molecule n (Δm / Δn), where n is in the range 4–18 (negatively charged clusters) or 1–17 (positively charged clusters). For negatively charged clusters, Δm / Δn saturated between 1 and 1.4 for [NH3] / [H2SO4]>10. Positively charged clusters grew on average by Δm / Δn = 1.05 and were only observed at sufficiently high [NH3] / [H2SO4]. The H2SO4 molecules of these clusters are partially neutralized by NH3, in close resemblance to the acid-base bindings of ammonium bisulfate. Supported by model simulations, we substantiate previous evidence for acid-base reactions being the essential mechanism behind the formation of these clusters under atmospheric conditions and up to sizes of at least 2 nm. Our results also suggest that yet unobservable electrically neutral NH3-H2SO4 clusters grow by generally the same mechanism as ionic clusters, particularly for [NH3] / [H2SO4]>10. We expect that NH3-H2SO4 clusters form and grow also mostly by Δm / Δn>1 in the atmosphere's boundary layer, as [NH3] / [H2SO4] is mostly larger than 10. We compared our results from CLOUD with APi-TOF measurements of NH3-H2SO4 anion clusters during new particle formation in the Finnish boreal forest. However, the exact role of NH3-H2SO4 clusters in boundary layer particle formation remains to be resolved.


2007 ◽  
Vol 7 (3) ◽  
pp. 7819-7841 ◽  
Author(s):  
A. Laaksonen ◽  
M. Kulmala ◽  
C. D. O'Dowd ◽  
J. Joutsensaari ◽  
P. Vaattovaara ◽  
...  

Abstract. Aerosol physical and chemical properties and trace gas concentrations were measured during the QUEST field campaign in March–April, 2003, in Hyytiälä, Finland. Our aim was to understand the role of oxidation products of VOC's such as mono- and sesquiterpenes in atmospheric nucleation events. Particle chemical compositions were measured using the Aerodyne Aerosol Mass Spectrometer, and chemical compositions of aerosol samples collected with low-pressure impactors and a high volume sampler were analysed using a number of techniques. The results indicate that during and after new particle formation, all particles larger than 50 nm in diameter contained similar organic substances that are likely to be mono- and sesquiterpene oxidation products. The oxidation products identified in the high volume samples were shown to be mostly aldehydes. In order to study the composition of particles in the 10–50 nm range, we made use of Tandem Differential Mobility Analyzer results. We found that during nucleation events, both 10 and 50 nm particle growth factors due to uptake of ethanol vapour correlate strongly with gas-phase monoterpene oxidation product (MTOP) concentrations, indicating that the organic constituents of particles smaller than 50 nm in diameter are at least partly similar to those of larger particles. We furthermore showed that particle growth rates during the nucleation events are correlated with the gas-phase MTOP concentrations. This indicates that VOC oxidation products may have a key role in determining the spatial and temporal features of the nucleation events. This conclusion was supported by our aircraft measurements of new 3–10 nm particle concentrations, which showed that the nucleation event on 28 March 2003, started at the ground layer, i.e. near the VOC source, and evolved together with the mixed layer. Furthermore, no new particle formation was detected upwind away from the forest, above the frozen Gulf of Bothnia.


2008 ◽  
Vol 8 (21) ◽  
pp. 6365-6374 ◽  
Author(s):  
T. Berndt ◽  
F. Stratmann ◽  
S. Bräsel ◽  
J. Heintzenberg ◽  
A. Laaksonen ◽  
...  

Abstract. Mechanistic investigations of atmospheric H2SO4 particle formation have been performed in a laboratory study taking either H2SO4 from a liquid reservoir or using the gas-phase reaction of OH radicals with SO2. Applying both approaches for H2SO4 generation simultaneously it was found that H2SO4 evaporated from the liquid reservoir acts considerably less effective for the process of particle formation and growth than the products originating from the reaction of OH radicals with SO2. Furthermore, for NOx concentrations >5×1011 molecule cm−3 the formation of new particles from the reaction of OH radicals with SO2 is inhibited. This suggests that substances other than H2SO4 (potentially products from sulphur-containing peroxy radicals) trigger lower tropospheric new particle formation and growth. The currently accepted mechanism for SO2 gas-phase oxidation does not consider the formation of such substances. The analysis of new particle formation for different reaction conditions in our experiment suggests that a contribution of impurities to the nucleation process is unlikely.


2008 ◽  
Vol 8 (3) ◽  
pp. 9761-9782 ◽  
Author(s):  
T. Berndt ◽  
F. Stratmann ◽  
S. Bräsel ◽  
J. Heintzenberg ◽  
A. Laaksonen ◽  
...  

Abstract. Mechanistic investigations of atmospheric H2SO4 particle formation have been performed in a laboratory study taking either H2SO4 from a liquid reservoir or using the gas-phase reaction of OH radicals with SO2. Applying both approaches for H2SO4 generation simultaneously we found that H2SO4 evaporated from the liquid reservoir acts considerably less effective for the process of particle formation and growth than the products originating from the reaction of OH radicals with SO2. Furthermore, for NOx concentrations >5×1011 molecule cm−3 the formation of new particles from the reaction of OH radicals with SO2 is inhibited. This suggests that substances other than H2SO4 (likely products from sulphur-containing peroxy radicals) trigger lower tropospheric new particle formation and growth. The currently accepted mechanism for SO2 gas-phase oxidation does not consider the formation of such substances making a revision necessary.


2020 ◽  
Vol 20 (15) ◽  
pp. 9183-9207 ◽  
Author(s):  
Mario Simon ◽  
Lubna Dada ◽  
Martin Heinritzi ◽  
Wiebke Scholz ◽  
Dominik Stolzenburg ◽  
...  

Abstract. Highly oxygenated organic molecules (HOMs) contribute substantially to the formation and growth of atmospheric aerosol particles, which affect air quality, human health and Earth's climate. HOMs are formed by rapid, gas-phase autoxidation of volatile organic compounds (VOCs) such as α-pinene, the most abundant monoterpene in the atmosphere. Due to their abundance and low volatility, HOMs can play an important role in new-particle formation (NPF) and the early growth of atmospheric aerosols, even without any further assistance of other low-volatility compounds such as sulfuric acid. Both the autoxidation reaction forming HOMs and their NPF rates are expected to be strongly dependent on temperature. However, experimental data on both effects are limited. Dedicated experiments were performed at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN to address this question. In this study, we show that a decrease in temperature (from +25 to −50 ∘C) results in a reduced HOM yield and reduced oxidation state of the products, whereas the NPF rates (J1.7 nm) increase substantially. Measurements with two different chemical ionization mass spectrometers (using nitrate and protonated water as reagent ion, respectively) provide the molecular composition of the gaseous oxidation products, and a two-dimensional volatility basis set (2D VBS) model provides their volatility distribution. The HOM yield decreases with temperature from 6.2 % at 25 ∘C to 0.7 % at −50 ∘C. However, there is a strong reduction of the saturation vapor pressure of each oxidation state as the temperature is reduced. Overall, the reduction in volatility with temperature leads to an increase in the nucleation rates by up to 3 orders of magnitude at −50 ∘C compared with 25 ∘C. In addition, the enhancement of the nucleation rates by ions decreases with decreasing temperature, since the neutral molecular clusters have increased stability against evaporation. The resulting data quantify how the interplay between the temperature-dependent oxidation pathways and the associated vapor pressures affect biogenic NPF at the molecular level. Our measurements, therefore, improve our understanding of pure biogenic NPF for a wide range of tropospheric temperatures and precursor concentrations.


2021 ◽  
Vol 21 (15) ◽  
pp. 11781-11800
Author(s):  
Luis M. F. Barreira ◽  
Arttu Ylisirniö ◽  
Iida Pullinen ◽  
Angela Buchholz ◽  
Zijun Li ◽  
...  

Abstract. Secondary organic aerosols (SOAs) formed from biogenic volatile organic compounds (BVOCs) constitute a significant fraction of atmospheric particulate matter and have been recognized to significantly affect the climate and air quality. Atmospheric SOA particulate mass yields and chemical composition result from a complex mixture of oxidation products originating from a diversity of BVOCs. Many laboratory and field experiments have studied SOA particle formation and growth in the recent years. However, a large uncertainty still remains regarding the contribution of BVOCs to SOA. In particular, organic compounds formed from sesquiterpenes have not been thoroughly investigated, and their contribution to SOA remains poorly characterized. In this study, a Filter Inlet for Gases and Aerosols (FIGAERO) combined with a high-resolution time-of-flight chemical ionization mass spectrometer (CIMS), with iodide ionization, was used for the simultaneous measurement of gas-phase and particle-phase oxygenated compounds. The aim of the study was to evaluate the relative contribution of sesquiterpene oxidation products to SOA in a springtime hemiboreal forest environment. Our results revealed that monoterpene and sesquiterpene oxidation products were the main contributors to SOA particles. The chemical composition of SOA particles was compared for times when either monoterpene or sesquiterpene oxidation products were dominant and possible key oxidation products for SOA particle formation were identified for both situations. Surprisingly, sesquiterpene oxidation products were the predominant fraction in the particle phase in some periods, while their gas-phase concentrations remained much lower than those of monoterpene products. This can be explained by favorable and effective partitioning of sesquiterpene products into the particle phase. The SOA particle volatility determined from measured thermograms increased when the concentration of sesquiterpene oxidation products in SOA particles was higher than that of monoterpenes. Overall, this study demonstrates that sesquiterpenes may have an important role in atmospheric SOA formation and oxidation chemistry, in particular during the spring recovery period.


2015 ◽  
Vol 15 (1) ◽  
pp. 55-78 ◽  
Author(s):  
S. Schobesberger ◽  
A. Franchin ◽  
F. Bianchi ◽  
L. Rondo ◽  
J. Duplissy ◽  
...  

Abstract. The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new-particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia (NH3) and sulfuric acid (H2SO4). Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small NH3–H2SO4 clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from < 2 to 1400 pptv, [H2SO4] from 3.3 × 106 to 1.4 × 109 cm−3 (0.1 to 56 pptv), and a temperature range from −25 to +20 °C. Negatively and positively charged clusters were directly measured by an atmospheric pressure interface time-of-flight (APi-TOF) mass spectrometer, as they initially formed from gas-phase NH3 and H2SO4, and then grew to larger clusters containing more than 50 molecules of NH3 and H2SO4, corresponding to mobility-equivalent diameters greater than 2 nm. Water molecules evaporate from these clusters during sampling and are not observed. We found that the composition of the NH3–H2SO4 clusters is primarily determined by the ratio of gas-phase concentrations [NH3] / [H2SO4], as well as by temperature. Pure binary H2O–H2SO4 clusters (observed as clusters of only H2SO4) only form at [NH3] / [H2SO4] < 0.1 to 1. For larger values of [NH3] / [H2SO4], the composition of NH3–H2SO4 clusters was characterized by the number of NH3 molecules m added for each added H2SO4 molecule n (Δm/Δ n), where n is in the range 4–18 (negatively charged clusters) or 1–17 (positively charged clusters). For negatively charged clusters, Δ m/Δn saturated between 1 and 1.4 for [NH3] / [H2SO4] > 10. Positively charged clusters grew on average by Δm/Δn = 1.05 and were only observed at sufficiently high [NH3] / [H2SO4]. The H2SO4 molecules of these clusters are partially neutralized by NH3, in close resemblance to the acid–base bindings of ammonium bisulfate. Supported by model simulations, we substantiate previous evidence for acid–base reactions being the essential mechanism behind the formation of these clusters under atmospheric conditions and up to sizes of at least 2 nm. Our results also suggest that electrically neutral NH3–H2SO4 clusters, unobservable in this study, have generally the same composition as ionic clusters for [NH3] / [H2SO4] > 10. We expect that NH3–H2SO4 clusters form and grow also mostly by Δm/Δn > 1 in the atmosphere's boundary layer, as [NH3] / [H2SO4] is mostly larger than 10. We compared our results from CLOUD with APi-TOF measurements of NH3–H2SO4 anion clusters during new-particle formation in the Finnish boreal forest. However, the exact role of NH3–H2SO4 clusters in boundary layer particle formation remains to be resolved.


Sign in / Sign up

Export Citation Format

Share Document