scholarly journals Present and future aerosol impacts on Arctic climate change in the GISS-E2.1 Earth system model

2021 ◽  
Vol 21 (13) ◽  
pp. 10413-10438
Author(s):  
Ulas Im ◽  
Kostas Tsigaridis ◽  
Gregory Faluvegi ◽  
Peter L. Langen ◽  
Joshua P. French ◽  
...  

Abstract. The Arctic is warming 2 to 3 times faster than the global average, partly due to changes in short-lived climate forcers (SLCFs) including aerosols. In order to study the effects of atmospheric aerosols in this warming, recent past (1990–2014) and future (2015–2050) simulations have been carried out using the GISS-E2.1 Earth system model to study the aerosol burdens and their radiative and climate impacts over the Arctic (>60∘ N), using anthropogenic emissions from the Eclipse V6b and the Coupled Model Intercomparison Project Phase 6 (CMIP6) databases, while global annual mean greenhouse gas concentrations were prescribed and kept fixed in all simulations. Results showed that the simulations have underestimated observed surface aerosol levels, in particular black carbon (BC) and sulfate (SO42-), by more than 50 %, with the smallest biases calculated for the atmosphere-only simulations, where winds are nudged to reanalysis data. CMIP6 simulations performed slightly better in reproducing the observed surface aerosol concentrations and climate parameters, compared to the Eclipse simulations. In addition, simulations where atmosphere and ocean are fully coupled had slightly smaller biases in aerosol levels compared to atmosphere-only simulations without nudging. Arctic BC, organic aerosol (OA), and SO42- burdens decrease significantly in all simulations by 10 %–60 % following the reductions of 7 %–78 % in emission projections, with the Eclipse ensemble showing larger reductions in Arctic aerosol burdens compared to the CMIP6 ensemble. For the 2030–2050 period, the Eclipse ensemble simulated a radiative forcing due to aerosol–radiation interactions (RFARI) of -0.39±0.01 W m−2, which is −0.08 W m−2 larger than the 1990–2010 mean forcing (−0.32 W m−2), of which -0.24±0.01 W m−2 was attributed to the anthropogenic aerosols. The CMIP6 ensemble simulated a RFARI of −0.35 to −0.40 W m−2 for the same period, which is −0.01 to −0.06 W m−2 larger than the 1990–2010 mean forcing of −0.35 W m−2. The scenarios with little to no mitigation (worst-case scenarios) led to very small changes in the RFARI, while scenarios with medium to large emission mitigations led to increases in the negative RFARI, mainly due to the decrease in the positive BC forcing and the decrease in the negative SO42- forcing. The anthropogenic aerosols accounted for −0.24 to −0.26 W m−2 of the net RFARI in 2030–2050 period, in Eclipse and CMIP6 ensembles, respectively. Finally, all simulations showed an increase in the Arctic surface air temperatures throughout the simulation period. By 2050, surface air temperatures are projected to increase by 2.4 to 2.6 ∘C in the Eclipse ensemble and 1.9 to 2.6 ∘C in the CMIP6 ensemble, compared to the 1990–2010 mean. Overall, results show that even the scenarios with largest emission reductions leads to similar impact on the future Arctic surface air temperatures and sea-ice extent compared to scenarios with smaller emission reductions, implying reductions of greenhouse emissions are still necessary to mitigate climate change.

2021 ◽  
Author(s):  
Ulas Im ◽  
Kostas Tsigaridis ◽  
Gregory Faluvegi ◽  
Peter L. Langen ◽  
Joshua P. French ◽  
...  

Abstract. The Arctic is warming two to three times faster than the global average, partly due to changes in short-lived climate forcers (SLCFs) including aerosols. In order to study the effects of atmospheric aerosols in this warming, recent past (1990–2014) and future (2015–2050) simulations have been carried out using the GISS-E2.1 Earth system model to study the aerosol burdens and their radiative and climate impacts over the Arctic (>60° N), using anthropogenic emissions from the Eclipse V6b and the Coupled Model Intercomparison Project Phase 6 (CMIP6) databases. Surface aerosol levels, in particular black carbon (BC) and sulfate (SO42−), have been significantly underestimated by more than 50 %, with the smallest biases calculated for the nudged atmosphere-only simulations. CMIP6 simulations performed slightly better in simulating both surface concentrations of aerosols and climate parameters, compared to the Eclipse simulations. In addition, fully-coupled simulations had slightly smaller biases in aerosol levels compared to atmosphere only simulations without nudging. Arctic BC, organic carbon (OC) and SO42− burdens decrease significantly in all simulations following the emission projections, with the CMIP6 ensemble showing larger reductions in Arctic aerosol burdens compared to the Eclipse ensemble. For the 2030–2050 period, both the Eclipse Current Legislation (CLE) and the Maximum Feasible Reduction (MFR) ensembles simulated an aerosol top of the atmosphere (TOA) forcing of −0.39±0.01 W m−2, of which −0.24±0.01 W m−2 were attributed to the anthropogenic aerosols. The CMIP6 SSP3-7.0 scenario simulated a TOA aerosol forcing of −0.35 W m−2 for the same period, while SSP1-2.6 and SSP2-4.5 scenarios simulated a slightly more negative TOA forcing (−0.40 W m−2), of which the anthropogenic aerosols accounted for −0.26 W m−2. Finally, all simulations showed an increase in the Arctic surface air temperatures both throughout the simulation period. In 2050, surface air temperatures are projected to increase by 2.4 °C to 2.6 °C in the Eclipse ensemble and 1.9 °C to 2.6 °C in the CMIP6 ensemble, compared to the 1990–2010 mean. Overall, results show that even the scenarios with largest emission reductions lead to similar impact on the future Arctic surface air temperatures compared to scenarios with smaller emission reductions, while scenarios no or little mitigation leads to much larger sea-ice loss, implying that even though the magnitude of aerosol reductions lead to similar responses in surface air temperatures, high mitigation of aerosols are still necessary to limit sea-ice loss.


2021 ◽  
Author(s):  
Ulas Im ◽  
Kostas Tsigaridis ◽  
Gregory S. Faluvegi ◽  
Peter L. Langen ◽  
Joshua P. French ◽  
...  

<p>In order to study the future aerosol burdens and their radiative and climate impacts over the Arctic (>60 °N), future (2015-2050) simulations have been carried out using the GISS-E2.1 Earth system model. Different future anthrpogenic emission projections have been used from the Eclipse V6b and the Coupled Model Intercomparison Project Phase 6 (CMIP6) databases. Results showed that Arctic BC, OC and SO<sub>4</sub><sup>2-</sup> burdens decrease significantly in all simulations following the emission projections, with the CMIP6 ensemble showing larger reductions in Arctic aerosol burdens compared to the Eclipse ensemble. For the 2030-2050 period, both the Eclipse Current Legislation (CLE) and the Maximum Feasible Reduction (MFR) ensembles simulated an aerosol top of the atmosphere (TOA) forcing of -0.39±0.01 W m<sup>-2</sup>, of which -0.24±0.01 W m<sup>-2</sup> were attributed to the anthropogenic aerosols. The CMIP6 SSP3-7.0 scenario simulated a TOA aerosol forcing of -0.35 W m<sup>-2</sup> for the same period, while SSP1-2.6 and SSP2-4.5 scenarios simulated a slightly more negative TOA forcing (-0.40 W m<sup>-2</sup>), of which the anthropogenic aerosols accounted for -0.26 W m<sup>-2</sup>. The 2030-2050 mean surface air temperatures are projected to increase by 2.1 °C and 2.4 °C compared to the 1990-2010 mean temperature according to the Eclipse CLE and MFR ensembles, respectively, while the CMIP6 simulation calculated an increase of 1.9 °C (SSP1-2.6) to 2.2 °C (SSP3-7.0). Overall, results show that even the scenarios with largest emission reductions lead to similar impact on the future Arctic surface air temperatures compared to scenarios with smaller emission reductions, while scenarios with no or little mitigation leads to much larger sea-ice loss, implying that even though the magnitude of aerosol reductions lead to similar responses in surface air temperatures, high mitigation of aerosols are still necessary to limit sea-ice loss. </p>


Author(s):  
Hyun Min Sung ◽  
Jisun Kim ◽  
Sungbo Shim ◽  
Jeong-byn Seo ◽  
Sang-Hoon Kwon ◽  
...  

AbstractThe National Institute of Meteorological Sciences-Korea Meteorological Administration (NIMS-KMA) has participated in the Coupled Model Inter-comparison Project (CMIP) and provided long-term simulations using the coupled climate model. The NIMS-KMA produces new future projections using the ensemble mean of KMA Advanced Community Earth system model (K-ACE) and UK Earth System Model version1 (UKESM1) simulations to provide scientific information of future climate changes. In this study, we analyze four experiments those conducted following the new shared socioeconomic pathway (SSP) based scenarios to examine projected climate change in the twenty-first century. Present day (PD) simulations show high performance skill in both climate mean and variability, which provide a reliability of the climate models and reduces the uncertainty in response to future forcing. In future projections, global temperature increases from 1.92 °C to 5.20 °C relative to the PD level (1995–2014). Global mean precipitation increases from 5.1% to 10.1% and sea ice extent decreases from 19% to 62% in the Arctic and from 18% to 54% in the Antarctic. In addition, climate changes are accelerating toward the late twenty-first century. Our CMIP6 simulations are released to the public through the Earth System Grid Federation (ESGF) international data sharing portal and are used to support the establishment of the national adaptation plan for climate change in South Korea.


2021 ◽  
Author(s):  
David Marcolino Nielsen ◽  
Patrick Pieper ◽  
Victor Brovkin ◽  
Paul Overduin ◽  
Tatiana Ilyina ◽  
...  

<p>When unprotected by sea-ice and exposed to the warm air and ocean waves, the Arctic coast erodes and releases organic carbon from permafrost to the surrounding ocean and atmosphere. This release is estimated to deliver similar amounts of organic carbon to the Arctic Ocean as all Arctic rivers combined, at the present-day climate. Depending on the degradation pathway of the eroded material, the erosion of the Arctic coast could represent a positive feedback loop in the climate system, to an extent still unknown. In addition, the organic carbon flux from Arctic coastal erosion is expected to increase in the future, mainly due to surface warming and sea-ice loss. In this work, we aim at addressing the following questions: How is Arctic coastal erosion projected to change in the future? How sensitive is Arctic coastal erosion to climate change?</p><p>To address these questions, we use a 10-member ensemble of climate change simulations performed with the Max Planck Institute Earth System Model (MPI-ESM) for the Coupled Model Intercomparison Project phase 6 (CMIP6) to make projections of coastal erosion at a pan-Arctic scale. We use a semi-empirical approach to model Arctic coastal erosion, assuming a linear contribution of its thermal and mechanical drivers. The pan-Arctic carbon release due to coastal erosion is projected to increase from 6.9 ± 5.4 TgC/year (mean estimate ± two standard deviations from the distribution of uncertainties) during the historical period (mean over 1850 -1950) to between 13.1 ± 6.7 TgC/year and 17.2 ± 8.2 TgC/year in the period 2081-2100 following an intermediate (SSP2.4-5) and a high-end (SSP5.8-5) climate change scenario, respectively. The sensitivity of the organic carbon release from Arctic coastal erosion to climate warming is estimated to range from 1.52 TgC/year/K to 2.79 TgC/year/K depending on the scenario. Our results present the first projections of Arctic coastal erosion, combining observations and Earth system model (ESM) simulations. This allows us to make first-order estimates of sensitivity and feedback magnitudes between Arctic coastal erosion and climate change, which can lay out pathways for future coupled ESM simulations.</p><p> </p>


2021 ◽  
Author(s):  
Sabine Undorf ◽  
Frida Bender

<p>Aerosol-cloud interactions (ACIs) continue to be subject to much uncertainty, supporting a large set of parametric and structural variants of a global climate or Earth System Model (ESM), especially regarding its aerosol and cloud microphysics components. This structural model uncertainty is relevant not only for the quantification of the climate response to anthropogenic aerosols: Because aerosol-cloud interactions are at the core of cloud and precipitation formation, they might also affect model-simulated cloud adjustments and feedbacks in response to greenhouse gases, and hence the model’s effective climate sensitivity (ECS). In-situ observations, satellite retrievals, and large-eddy simulations point to discrepancies between the effects of aerosol-cloud interactions in the real world and as modelled in ESMs, with potential implications for the model range also for ECS. </p><p>Here, we explore how different choices in ACI modelling affect the model’s ECS. For this case study the CMIP6-generation Norwegian Earth System Model version 2 (NorESM2) is used, which has a sophisticated aerosol module and in its ‘default’ version contributed to the CMIP6 suite relatively weak positive cloud feedbacks compared to the other models within the 150 years used to calculate the regression-based ECS (EffCS). The climate change feedback and hence ECS of each modified model version compared to that of the default one is estimated by prescribing a uniform rise of 4K in the sea-surface temperature boundary conditions and evaluating the resulting top-of-atmosphere imbalance difference. A similar or better representation of present-day mean climate in general and ACI effects in particular is ensured by comparing a suite of evaluation metrics with their observationally derived pendants and results from the literature.</p><p>The ACI effects and relevant model-observation discrepancies targeted with the model modifications include models’ excessive cloud brightening over stratocumulus regions compared to satellite products, excessive increase in liquid water path associated with increased aerosol amount, and model bias in the climatological fraction between supercooled liquid water and cloud ice in mixed-phase clouds. For each of these, experiments with multiple combinations of modifications in the model code are analysed, exemplifying the numerous different processes and parameters that together determine the model response. The findings complement approaches to explore models’ parameter spaces systematically by informing the choices physically and restricting the modifications not only to parametric changes. The range of models obtained sets the default NorESM2 version, with its ECS being part of the CMIP6 ensemble, into the context of ACI uncertainty, informs on the so far possibly underappreciated relevance of ACIs for climate change beyond anthropogenic aerosols, and suggests alternative parameterisations for future ‘default’ model versions.</p><div>2.11.0.0</div>


2013 ◽  
Vol 26 (11) ◽  
pp. 3657-3670 ◽  
Author(s):  
Andrew D. Jones ◽  
William D. Collins ◽  
James Edmonds ◽  
Margaret S. Torn ◽  
Anthony Janetos ◽  
...  

Abstract Proposed climate mitigation measures do not account for direct biophysical climate impacts of land-use change (LUC), nor do the stabilization targets modeled for phase 5 of the Coupled Model Intercomparison Project (CMIP5) representative concentration pathways (RCPs). To examine the significance of such effects on global and regional patterns of climate change, a baseline and an alternative scenario of future anthropogenic activity are simulated within the Integrated Earth System Model, which couples the Global Change Assessment Model, Global Land-Use Model, and Community Earth System Model. The alternative scenario has high biofuel utilization and approximately 50% less global forest cover than the baseline, standard RCP4.5 scenario. Both scenarios stabilize radiative forcing from atmospheric constituents at 4.5 W m−2 by 2100. Thus, differences between their climate predictions quantify the biophysical effects of LUC. Offline radiative transfer and land model simulations are also utilized to identify forcing and feedback mechanisms driving the coupled response. Boreal deforestation is found to strongly influence climate because of increased albedo coupled with a regional-scale water vapor feedback. Globally, the alternative scenario yields a twenty-first-century warming trend that is 0.5°C cooler than baseline, driven by a 1 W m−2 mean decrease in radiative forcing that is distributed unevenly around the globe. Some regions are cooler in the alternative scenario than in 2005. These results demonstrate that neither climate change nor actual radiative forcing is uniquely related to atmospheric forcing targets such as those found in the RCPs but rather depend on particulars of the socioeconomic pathways followed to meet each target.


2013 ◽  
Vol 40 (9-10) ◽  
pp. 2123-2165 ◽  
Author(s):  
J.-L. Dufresne ◽  
M.-A. Foujols ◽  
S. Denvil ◽  
A. Caubel ◽  
O. Marti ◽  
...  

2013 ◽  
Vol 9 (4) ◽  
pp. 1519-1542 ◽  
Author(s):  
R. Ohgaito ◽  
T. Sueyoshi ◽  
A. Abe-Ouchi ◽  
T. Hajima ◽  
S. Watanabe ◽  
...  

Abstract. The importance of evaluating models through paleoclimate simulations is becoming more recognized in efforts to improve climate projection. To evaluate an integrated Earth System Model, MIROC-ESM, we performed simulations in time-slice experiments for the mid-Holocene (6000 yr before present, 6 ka) and preindustrial (1850 AD, 0 ka) periods under the protocol of the Coupled Model Intercomparison Project 5/Paleoclimate Modelling Intercomparison Project 3. We first give an overview of the simulated global climates by comparing with simulations using a previous version of the MIROC model (MIROC3), which is an atmosphere–ocean coupled general circulation model. We then comprehensively discuss various aspects of climate change with 6 ka forcing and how the differences in the models can affect the results. We also discuss the representation of the precipitation enhancement at 6 ka over northern Africa. The precipitation enhancement at 6 ka over northern Africa according to MIROC-ESM does not differ greatly from that obtained with MIROC3, which means that newly developed components such as dynamic vegetation and improvements in the atmospheric processes do not have significant impacts on the representation of the 6 ka monsoon change suggested by proxy records. Although there is no drastic difference between the African monsoon representations of the two models, there are small but significant differences in the precipitation enhancement over the Sahara in early summer, which can be related to the representation of the sea surface temperature rather than the vegetation coupling in MIROC-ESM. Because the oceanic parts of the two models are identical, the difference in the sea surface temperature change is ultimately attributed to the difference in the atmospheric and/or land modules, and possibly the difference in the representation of low-level clouds.


2020 ◽  
Author(s):  
Oliver Gutjahr ◽  
Nils Brüggemann ◽  
Helmuth Haak ◽  
Johann H. Jungclaus ◽  
Dian A. Putrasahan ◽  
...  

Abstract. We compare the effects of four different ocean vertical mixing schemes on the ocean mean state simulated by the Max Planck Institute Earth System Model (MPI-ESM1.2) in the framework of the Community Vertical Mixing (CVMix) library. Besides the PP and KPP scheme, we implemented the TKE scheme and a recently developed prognostic scheme for internal wave energy and its dissipation (IDEMIX) to replace the often assumed constant background diffusivity in the ocean interior. We analyse in particular the effects of IDEMIX on the ocean mean state, when combined with TKE (TKE+IDEMIX). In general, we find little sensitivity of the ocean surface, but considerable effects for the interior ocean. Overall, we cannot classify any scheme as superior, because they modify biases that vary by region or variable, but produce a similar pattern on the global scale. However, using a more realistic and energetically consistent scheme (TKE+IDEMIX) produces a more heterogeneous pattern of vertical diffusion, with lower diffusivity in deep and flat-bottom basins and elevated turbulence over rough topography. In addition, TKE+IDEMIX improves the circulation in the Nordic Seas and Fram Strait, thus reducing the warm bias of the Atlantic water (AW) layer in the Arctic Ocean to a similar extent as has been demonstrated with eddy-resolving ocean models. We conclude that although shortcomings due to model resolution determine the global-scale bias pattern, the choice of the vertical mixing scheme may play an important role for regional biases.


Sign in / Sign up

Export Citation Format

Share Document