scholarly journals Sources of black carbon at residential and traffic environments obtained by two source apportionment methods

2021 ◽  
Vol 21 (19) ◽  
pp. 14851-14869
Author(s):  
Sanna Saarikoski ◽  
Jarkko V. Niemi ◽  
Minna Aurela ◽  
Liisa Pirjola ◽  
Anu Kousa ◽  
...  

Abstract. This study investigated the sources of black carbon (BC) at two contrasting urban environments in Helsinki, Finland: residential area and street canyon. The measurement campaign in the residential area was conducted in winter–spring 2019, whereas in the street canyon the measurements were carried out in autumn 2015. The sources of BC were explored by using positive matrix factorization (PMF) for the organic and refractory black carbon (rBC) mass spectra collected with a soot particle aerosol mass spectrometer (SP-AMS). Based on the PMF analysis, two sites had different local BC sources; the largest fraction of BC originated from biomass burning at the residential site (38 %) and from the vehicular emissions in the street canyon (57 %). Also, the mass size distribution of BC diverged at the sites as BC from traffic was found at the particle size of ∼100–150 nm whereas BC from biomass combustion was detected at ∼300 nm. At both sites, a large fraction of BC was associated with urban background or long-range-transported BC indicated by the high oxidation state of organics related to those PMF factors. The results from the PMF analysis were compared with the source apportionment from the Aethalometer model calculated with two pairs of absorption Ångström values. It was found that several PMF factors can be attributed to wood combustion and fossil fuel fraction of BC provided by the Aethalometer model. In general, the Aethalometer model showed less variation between the sources within a day than PMF, indicating that it was less responsive to the fast changes in the BC sources at the site, or it could not distinguish between as many sources as PMF due to the similar optical properties of the BC sources. The results of this study increase understanding of the limitations and validity of the BC source apportionment methods in different environments. Moreover, this study advances the current knowledge of BC sources and especially the contribution of residential combustion in urban areas.

2021 ◽  
Author(s):  
Sanna Saarikoski ◽  
Jarkko V. Niemi ◽  
Minna Aurela ◽  
Liisa Pirjola ◽  
Anu Kousa ◽  
...  

Abstract. This study investigated the sources of black carbon (BC) at two contrasting urban environments in Helsinki, Finland; residential area and street canyon. The sources of BC were explored by using positive matrix factorization (PMF) for the organic and refractory black carbon (rBC) mass spectra collected with a soot particle aerosol mass spectrometer (SP-AMS). Two sites had different local BC sources; the largest fraction of BC originated from biomass burning at the residential site (38 %) and from the vehicular emissions at the street canyon (57 %). Also, the mass size distribution of BC diverged at the sites as BC from traffic was found at the particle size of ~100–150 nm whereas BC from biomass combustion was detected at ~300 nm. At both sites, a large fraction of BC was associated with urban background or long-range transported BC indicated by the high oxidation state of organics related to those PMF factors. The results from the PMF analysis were compared with the source apportionment from the aethalometer model calculated with two pair of absorption Ångström values. It was found that several PMF factors can be attributed to wood combustion and fossil fuel fraction of BC provided by the aethalometer model. In general, the aethalometer model showed less variation between the sources within a day than PMF being less responsive to the fast changes in the BC sources at the site. The results of this study increase understanding of the limitations and validity of the BC source apportionment methods in different environments. Moreover, this study advances the current knowledge of BC sources and especially the contribution of residential combustion in urban areas.


2021 ◽  
Vol 11 (2) ◽  
pp. 516
Author(s):  
María Piñeiro-Iglesias ◽  
Javier Andrade-Garda ◽  
Sonia Suárez-Garaboa ◽  
Soledad Muniategui-Lorenzo ◽  
Purificación López-Mahía ◽  
...  

Light-absorbing carbonaceous aerosols (including black carbon (BC)) pose serious health issues and play significant roles in atmospheric radiative properties. Two-year measurements (2015–2016) of aerosol light absorption, combined with measurements of sub-micrometric particles, were continuously conducted in A Coruña (northwest (NW) Spain) to determine their light absorption properties: absorption coefficients (σabs) and the absorption Ångström exponent (AAE). The mean and standard deviation of equivalent black carbon (eBC) during the period of study were 0.85 ± 0.83 µg m−3, which are lower than other values measured in urban areas of Spain and Europe. High eBC concentrations found in winter are associated with an increase in emissions from anthropogenic sources in combination with lower mixing layer heights and frequent stagnant conditions. The pronounced diurnal variability suggests a strong influence from local sources. AAE had an average value of 1.26 ± 0.22 which implies that both fossil fuel combustion and biomass burning influenced optical aerosol properties. This also highlights biomass combustion in suburban areas, where the use of wood for domestic heating is encouraged, as an important source of eBC. All data treatment was gathered using SCALA© as atmospheric aerosol data management support software program.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1314
Author(s):  
Wei Chen ◽  
Ge Song ◽  
Haimeng Zhao ◽  
Shanlin Sun ◽  
Yi Wu

Black carbon (BC) aerosols have a considerable impact on humans because they not only cause environmental pollution and reduce visibility but also harm human health. During the heating season in northern China, a large amount of coal is burned for heating, producing a large amount of BC. There are few studies on BC properties during the heating season. In this paper, BC is measured optically, so it is referred to as equivalent black carbon (EBC). This paper investigated EBC properties in depth during the heating and nonheating seasons of a typical urban environment in China with two years of EBC measurements. The results show that: (1) EBC aerosol concentrations during the heating season were significantly higher than those during the nonheating season. (2) The main sources of EBC aerosols throughout the year are liquid sources. During the heating season, solid sources (coal and biomass combustion) are dominant. (3) The proportion of brown carbon (BrC) produced by biomass energy during the heating season is greater than that during the nonheating season. (4) The resulting backward trajectory indicates that a large portion of the high EBC aerosol concentration sources originate from northern and northwestern China. Our results reveal that the characteristics and sources of EBC in the urban environment of northern China vary widely, suggesting that different measures should be taken to reduce BC aerosol concentrations during heating and nonheating seasons.


2021 ◽  
Vol 21 (15) ◽  
pp. 11655-11667
Author(s):  
Ernesto Reyes-Villegas ◽  
Upasana Panda ◽  
Eoghan Darbyshire ◽  
James M. Cash ◽  
Rutambhara Joshi ◽  
...  

Abstract. Air pollution in urban environments has been shown to have a negative impact on air quality and human health, particularly in megacities. Over recent decades, Delhi, India, has suffered high atmospheric pollution, with significant particulate matter (PM) concentrations as a result of anthropogenic activities. Organic aerosols (OAs) are composed of thousands of different chemical species and are one of the main constituents of submicron particles. However, quantitative knowledge of OA composition, their sources and their processes in urban environments is still limited. This is important particularly in India, as Delhi is a massive, inhomogeneous conurbation, where we would expect the apportionment and concentrations to vary depending on where in Delhi the measurements/source apportionment is performed, indicating the need for multisite measurements. This study presents the first multisite analysis carried out in India over different seasons, with a focus on identifying OA sources. The measurements were taken during 2018 at two sites in Delhi, India. One site was located at the India Meteorological Department, New Delhi (ND). The other site was located at the Indira Gandhi Delhi Technical University for Women, Old Delhi (OD). Non-refractory submicron aerosol (NR-PM1) concentrations (ammonium, nitrate, sulfate, chloride and organic aerosols) of four aerosol mass spectrometers were analysed. Collocated measurements of volatile organic compounds, black carbon, NOx and CO were performed. Positive matrix factorisation (PMF) analysis was performed to separate the organic fraction, identifying a number of conventional factors: hydrocarbon-like OAs (HOAs) related to traffic emissions, biomass burning OAs (BBOAs), cooking OAs (COAs) and secondary OAs (SOAs). A composition-based estimate of PM1 is defined by combining black carbon (BC) and NR-PM1 (C-PM1= BC + NR-PM1). No significant difference was observed in C-PM1 concentrations between sites, OD (142 ± 117 µg m−3) compared to ND (123 ± 71 µg m3), from post-monsoon measurements. A wider variability was observed between seasons, where pre-monsoon and monsoon showed C-PM1 concentrations lower than 60 µg m−3. A seasonal variation in C-PM1 composition was observed; SO42- showed a high contribution over pre-monsoon and monsoon seasons, while NO3- and Cl− had a higher contribution in winter and post-monsoon. The main primary aerosol source was from traffic, which is consistent with the PMF analysis and Aethalometer model analysis. Thus, in order to reduce PM1 concentrations in Delhi through local emission controls, traffic emission control offers the greatest opportunity. PMF–aerosol mass spectrometer (AMS) mass spectra will help to improve future aerosol source apportionment studies. The information generated in this study increases our understanding of PM1 composition and OA sources in Delhi, India. Furthermore, the scientific findings provide significant information to strengthen legislation that aims to improve air quality in India.


Author(s):  
Philip James

The focus of this chapter is an examination of the diversity of living organisms found within urban environments, both inside and outside buildings. The discussion commences with prions and viruses before moving on to consider micro-organisms, plants, and animals. Prions and viruses cause disease in plants and animals, including humans. Micro-organisms are ubiquitous and are found in great numbers throughout urban environments. New technologies are providing new insights into their diversity. Plants may be found inside buildings as well as in gardens and other green spaces. The final sections of the chapter offer a discussion of the diversity of animals that live in urban areas for part or all of their life cycle. Examples of the diversity of life in urban environments are presented throughout, including native and non-native species, those that are benign and deadly, and the common and the rare.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 175
Author(s):  
Jan Geletič ◽  
Michal Lehnert ◽  
Pavel Krč ◽  
Jaroslav Resler ◽  
Eric Scott Krayenhoff

The modelling of thermal exposure in outdoor urban environments is a highly topical challenge in modern climate research. This paper presents the results derived from a new micrometeorological model that employs an integrated biometeorology module to model Universal Thermal Climate Index (UTCI). This is PALM-4U, which includes an integrated human body-shape parameterization, deployed herein for a pilot domain in Prague, Czech Republic. The results highlight the key role of radiation in the spatiotemporal variability of thermal exposure in moderate-climate urban areas during summer days in terms of the way in which this directly affects thermal comfort through radiant temperature and indirectly through the complexity of turbulence in street canyons. The model simulations suggest that the highest thermal exposure may be expected within street canyons near the irradiated north sides of east–west streets and near streets oriented north–south. Heat exposure in streets increases in proximity to buildings with reflective paints. The lowest heat exposure during the day may be anticipated in tree-shaded courtyards. The cooling effect of trees may range from 4 °C to 9 °C in UTCI, and the cooling effect of grass in comparison with artificial paved surfaces in open public places may be from 2 °C to 5 °C UTCI. In general terms, this study illustrates that the PALM modelling system provides a new perspective on the spatiotemporal differentiation of thermal exposure at the pedestrian level; it may therefore contribute to more climate-sensitive urban planning.


2021 ◽  
Vol 11 (5) ◽  
pp. 2057
Author(s):  
Abdallah Namoun ◽  
Ali Tufail ◽  
Nikolay Mehandjiev ◽  
Ahmed Alrehaili ◽  
Javad Akhlaghinia ◽  
...  

The use and coordination of multiple modes of travel efficiently, although beneficial, remains an overarching challenge for urban cities. This paper implements a distributed architecture of an eco-friendly transport guidance system by employing the agent-based paradigm. The paradigm uses software agents to model and represent the complex transport infrastructure of urban environments, including roads, buses, trolleybuses, metros, trams, bicycles, and walking. The system exploits live traffic data (e.g., traffic flow, density, and CO2 emissions) collected from multiple data sources (e.g., road sensors and SCOOT) to provide multimodal route recommendations for travelers through a dedicated application. Moreover, the proposed system empowers the transport management authorities to monitor the traffic flow and conditions of a city in real-time through a dedicated web visualization. We exhibit the advantages of using different types of agents to represent the versatile nature of transport networks and realize the concept of smart transportation. Commuters are supplied with multimodal routes that endeavor to reduce travel times and transport carbon footprint. A technical simulation was executed using various parameters to demonstrate the scalability of our multimodal traffic management architecture. Subsequently, two real user trials were carried out in Nottingham (United Kingdom) and Sofia (Bulgaria) to show the practicality and ease of use of our multimodal travel information system in providing eco-friendly route guidance. Our validation results demonstrate the effectiveness of personalized multimodal route guidance in inducing a positive travel behavior change and the ability of the agent-based route planning system to scale to satisfy the requirements of traffic infrastructure in diverse urban environments.


Sign in / Sign up

Export Citation Format

Share Document