scholarly journals Was Australia a sink or source of CO<sub>2</sub> in 2015? Data assimilation using OCO-2 satellite measurements

2021 ◽  
Vol 21 (23) ◽  
pp. 17453-17494
Author(s):  
Yohanna Villalobos ◽  
Peter J. Rayner ◽  
Jeremy D. Silver ◽  
Steven Thomas ◽  
Vanessa Haverd ◽  
...  

Abstract. In this study, we present the assimilation of data from the Orbiting Carbon Observatory-2 (OCO-2) (land nadir and glint data, version 9) to estimate the Australian carbon surface fluxes for the year 2015. To perform this estimation, we used both a regional-scale atmospheric transport–dispersion model and a four-dimensional variational assimilation scheme. Our results suggest that Australia was a carbon sink of −0.41 ± 0.08 PgC yr−1 compared to the prior estimate 0.09 ± 0.20 PgC yr−1 (excluding fossil fuel emissions). Most of the carbon uptake occurred in northern Australia over the savanna ecotype and in the western region over areas with sparse vegetation. Analysis of the enhanced vegetation index (EVI) suggests that the majority of the carbon uptake over the savanna ecosystem was due to an increase of vegetation productivity (positive EVI anomalies) amplified by an anomalous increase of rainfall in summer. Further from this, a slight increase of carbon uptake in Western Australia over areas with sparse vegetation (the largest ecosystem in Australia) was noted due to increased land productivity in the area caused by positive rainfall anomalies. The stronger carbon uptake estimate in this ecosystem was partially due to the land surface model (CABLE-BIOS3) underestimating the gross primary productivity of the ecosystem. To evaluate the accuracy of our carbon flux estimates from OCO-2 retrievals, we compare our posterior concentration fields against the column-averaged carbon retrievals from the Total Carbon Column Observing Network (TCCON) and ground-based in situ monitoring sites located around our domain. The validation analysis against TCCON shows that our system is able to reduce bias mainly in the summer season. Comparison with surface in situ observations was less successful, particularly over oceanic monitoring sites that are strongly affected by oceanic fluxes and subject to less freedom by the inversion. For stations located far from the coast, the comparison with in situ data was more variable, suggesting difficulties matching the column-integrated and surface data by the inversion, most likely linked to model vertical transport. Comparison of our fluxes against the OCO-2 model intercomparison (MIP) was encouraging. The annual carbon uptake estimated by our inversion falls within the ensemble of the OCO-2 MIP global inversions and presents a similar seasonal pattern.

2021 ◽  
Author(s):  
Yohanna Villalobos ◽  
Peter J. Rayner ◽  
Jeremy D. Silver ◽  
Steven Thomas ◽  
Vanessa Haverd ◽  
...  

Abstract. In this study, we present the assimilation of data from the Orbiting Carbon Observatory-2 (OCO-2) to estimate the Australian CO2 surface fluxes for the year 2015. We used a regional-scale atmospheric transport-dispersion model and a four-dimensional variational assimilation scheme. Our results suggest that Australia was a carbon sink of −0.3 ± 0.09 PgC y−1 compared to the prior estimate 0.09 ± 0.17 PgC y−1 (excluding fossil fuel emissions). Most of the uptake occurred over northern savannas, the Mediterranean ecotype in southern Australia and the sparsely vegetated ecotype in central Australia. Our results suggest that the majority of the carbon uptake over Mediterranean was associated with positive EVI anomalies (relative to 2000–2014). However, the stronger posterior carbon uptake estimated over savanna and sparsely vegetated ecosystem was due primarily to underestimation of the gross primary productivity by the land surface model (CABLE-BIOS3 model). To evaluate the accuracy of our posterior flux estimates, we compare our posterior CO2 concentration simulations against the column- averaged carbon retrievals from the Total Carbon Column Observing Network (TCCON) and ground-based in-situ monitoring sites located around our Australia domain. In general, the performance of our posterior concentration compared well with TCCON observations, except when TCCON concentrations were dominated by ocean fluxes which were tightly constrained to their prior values. Comparisons with in-situ measurements also show encouraging results though with similar difficulties for coastal stations. For stations located far from the coast, the comparison with in situ data was more variable, suggesting difficulties to match the column-integrated and surface data by the inversion, most likely linked to model vertical transport.


2008 ◽  
Vol 5 (5) ◽  
pp. 4161-4207 ◽  
Author(s):  
H. W. Ter Maat ◽  
R. W. A. Hutjes

Abstract. A large scale mismatch exists between our understanding and quantification of ecosystem atmosphere exchange of carbon dioxide at local scale and continental scales. This paper will focus on the carbon exchange on the regional scale to address the following question: What are the main controlling factors determining atmospheric carbon dioxide content at a regional scale? We use the Regional Atmospheric Modelling System (RAMS), coupled with a land surface scheme simulating carbon, heat and momentum fluxes (SWAPS-C), and including also sub models for urban and marine fluxes, which in principle include the main controlling mechanisms and capture the relevant dynamics of the system. To validate the model, observations are used which were taken during an intensive observational campaign in the central Netherlands in summer 2002. These included flux-site observations, vertical profiles at tall towers and spatial fluxes of various variables taken by aircraft. The coupled regional model (RAMS-SWAPS-C) generally does a good job in simulating results close to reality. The validation of the model demonstrates that surface fluxes of heat, water and CO2 are reasonably well simulated. The comparison against aircraft data shows that the regional meteorology is captured by the model. Comparing spatially explicit simulated and observed fluxes we conclude that in general simulated latent heat fluxes are underestimated by the model to the observations which exhibit large standard deviation for all flights. Sensitivity experiments demonstrated the relevance of the urban emissions of carbon dioxide for the carbon balance in this particular region. The same test also show the relation between uncertainties in surface fluxes and those in atmospheric concentrations.


2013 ◽  
Vol 52 (10) ◽  
pp. 2312-2327 ◽  
Author(s):  
Peter Greve ◽  
Kirsten Warrach-Sagi ◽  
Volker Wulfmeyer

AbstractSoil water content (SWC) depends on and affects the energy flux partitioning at the land–atmosphere interface. Above all, the latent heat flux is limited by the SWC of the root zone on one hand and radiation on the other. Therefore, SWC is a key variable in the climate system. In this study, the performance of the Weather Research and Forecasting model coupled with the Noah land surface model (WRF-Noah) system in a climate hindcast simulation from 1990 to 2008 is evaluated with respect to SWC versus two reanalysis datasets for Europe during 2007 and 2008 with in situ soil moisture observations from southern France. When compared with the in situ observations, WRF-Noah generally reproduces the SWC annual cycle while the reanalysis SWCs do not. The biases in areal mean WRF-Noah SWCs relate to biases in precipitation and evapotranspiration in a cropland environment. The spatial patterns and temporal variability of the seasonal mean SWCs from the WRF-Noah simulations and from the two reanalyses correspond well, while absolute values differ significantly, especially at the regional scale.


2009 ◽  
Vol 6 (8) ◽  
pp. 1389-1404 ◽  
Author(s):  
A. Brut ◽  
C. Rüdiger ◽  
S. Lafont ◽  
J.-L. Roujean ◽  
J.-C. Calvet ◽  
...  

Abstract. A CO2-responsive land surface model (the ISBA-A-gs model of Météo-France) is used to simulate photosynthesis and Leaf Area Index (LAI) in southwestern France for a 3-year period (2001–2003). A domain of about 170 000 km2 is covered at a spatial resolution of 8 km. The capability of ISBA-A-gs to reproduce the seasonal and the interannual variability of LAI at a regional scale, is assessed with satellite-derived LAI products. One originates from the CYCLOPES programme using SPOT/VEGETATION data, and two products are based on MODIS data. The comparison reveals discrepancies between the satellite LAI estimates and between satellite and simulated LAI values, both in their intensity and in the timing of the leaf onset. The model simulates higher LAI values for the C3 crops than the satellite observations, which may be due to a saturation effect within the satellite signal or to uncertainties in model parameters. The simulated leaf onset presents a significant delay for C3 crops and mountainous grasslands. In-situ observations at a mid-altitude grassland site show that the generic temperature response of photosynthesis used in the model is not appropriate for plants adapted to the cold climatic conditions of the mountainous areas. This study demonstrates the potential of LAI remote sensing products for identifying and locating models' shortcomings at a regional scale.


2009 ◽  
Vol 48 (2) ◽  
pp. 217-231 ◽  
Author(s):  
Lahouari Bounoua ◽  
Abdelmounaine Safia ◽  
Jeffrey Masek ◽  
Christa Peters-Lidard ◽  
Marc L. Imhoff

Abstract The authors develop a land use map discriminating urban surfaces from other cover types over a semiarid region in North Africa and use it in a land surface model to assess the impact of urbanized land on surface energy, water, and carbon balances. Unlike in temperate climates where urbanization creates a marked heat island effect, this effect is not strongly marked in semiarid regions. During summer, the urban class results in an additional warming of 1.45°C during daytime and 0.81°C at night relative to that simulated for needleleaf trees under similar climate conditions. Seasonal temperatures show that urban areas are warmer than their surrounding areas during summer and slightly cooler in winter. The hydrological cycle is practically “shut down” during summer and is characterized by relatively large amounts of runoff in winter. The authors estimate the annual amount of carbon uptake to be 1.94 million metric tons with only 11.9% assimilated during the rainy season. However, if urbanization expands to reach 50% of the total area excluding forests, the annual total carbon uptake will decline by 35% and the July mean temperature would increase only 0.10°C relative to the current situation. In contrast, if urbanization expands to 50% of the total land excluding forests and croplands but all short vegetation is replaced by native broadleaf deciduous trees, the annual carbon uptake would increase by 39% and the July mean temperature would decrease by 0.9°C relative to the current configuration. These results provide guidelines for urban planners and land use managers and indicate possibilities for mitigating the urban heat.


2009 ◽  
Vol 6 (2) ◽  
pp. 4059-4093
Author(s):  
A. Brut ◽  
C. Rüdiger ◽  
S. Lafont ◽  
J.-L. Roujean ◽  
J.-C. Calvet ◽  
...  

Abstract. A CO2-responsive land surface model (the ISBA-A-gs model of Météo-France) is used to simulate photosynthesis and Leaf Area Index (LAI) in southwestern France for a 3-year period (2001–2003). A domain of about 170 000 km2 is covered at a spatial resolution of 8 km. The capability of ISBA-A-gs to reproduce the seasonal and the inter-annual variability of LAI at a regional scale, is assessed with two satellite-derived LAI products. One originates from the CYCLOPES programme using SPOT/VEGETATION data, and the second is based on MODIS data. The comparison reveals discrepancies between the two satellite LAI estimates and between satellite and simulated LAI values, both in their intensity and in the timing of the leaf onset. The model simulates higher LAI values for the C3 crops and coniferous trees than the satellite observations, which may be due to a saturation effect within the satellite signal. The simulated leaf onset presents a significant delay for mountainous grasslands. In-situ observations at a mid-altitude grassland site show that the generic temperature response of photosynthesis used in the model is not appropriate for plants adapted to the cold climatic conditions of the mountainous areas. This study demonstrates the potential of LAI remote sensing products for identifying and locating models' shortcomings at a regional scale.


2021 ◽  
Author(s):  
Gianpaolo Balsamo ◽  
Souhail Boussetta

&lt;p&gt;The ECMWF operational land surface model, based on the Carbon-Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (CHTESSEL) is the baseline for global weather, climate and environmental applications at ECMWF. In order to expedite its progress and benefit from international collaboration, an ECLand platform has been designed to host advanced and modular schemes. ECLand is paving the way toward a land model that could support a wider range of modelling applications, facilitating global kilometer scales testing as envisaged in the Copernicus and Destination Earth programmes. This presentation&amp;#160;introduces the CHTESSEL and its recent new developments that aims at hosting new research applications.&lt;/p&gt;&lt;p&gt;These new improvements touch upon different components of the model: (i) vegetation, (ii) snow, (iii) soil hydrology, (iv) open water/lakes (v) rivers and (vi) urban areas. The developments are evaluated separately with either offline simulations or coupled experiments, depending on their level of operational readiness, illustrating the benchmarking criteria for assessing process fidelity with regards to land surface fluxes and reservoirs involved in water-energy-carbon exchange, and within the Earth system prediction framework, as foreseen to enter upcoming ECMWF operational cycles.&lt;/p&gt;&lt;p&gt;Reference: Souhail Boussetta, Gianpaolo Balsamo*, Anna Agust&amp;#236;-Panareda, Gabriele Arduini, Anton Beljaars, Emanuel Dutra, Glenn Carver, Margarita Choulga, Ioan Hadade, Cinzia Mazzetti, Joaqu&amp;#236;n Mun&amp;#245;z-Sabater, Joe McNorton, Christel Prudhomme, Patricia De Rosnay, Irina Sandu, Nils Wedi, Dai Yamazaki, Ervin Zsoter, 2021: ECLand: an ECMWF land surface modelling platform, MDPI Atmosphere, (in prep).&lt;/p&gt;


2018 ◽  
Author(s):  
Marwa Tifafi ◽  
Marta Camino-Serrano ◽  
Christine Hatté ◽  
Hector Morras ◽  
Lucas Moretti ◽  
...  

Abstract. Despite the importance of soil as a large component of the terrestrial ecosystems, the soil compartments are not well represented in the Land Surface Models (LSMs). Indeed, soils in current LSMs are generally represented based on a very simplified schema that can induce a misrepresentation of the deep dynamics of soil carbon. Here, we present a new version of the IPSL-Land Surface Model called ORCHIDEE-SOM, incorporating the 14C dynamic in the soil. ORCHIDEE-SOM, first, simulates soil carbon dynamics for different layers, down to 2 m depth. Second, concentration of dissolved organic carbon (DOC) and its transport are modeled. Finally, soil organic carbon (SOC) decomposition is considered taking into account the priming effect. After implementing the 14C in the soil module of the model, we evaluated model outputs against observations of soil organic carbon and 14C activity (F14C) for different sites with different characteristics. The model managed to reproduce the soil organic carbon stocks and the F14C along the vertical profiles. However, an overestimation of the total carbon stock was noted, but was mostly marked on the surface. Then, thanks to the introduction of 14C, it has been possible to highlight an underestimation of the age of carbon in the soil. Thereafter, two different tests on this new version have been established. The first was to increase carbon residence time of the passive pool and decrease the flux from the slow pool to the passive pool. The second was to establish an equation of diffusion, initially constant throughout the profile, making it vary exponentially as a function of depth. The first modifications did not improve the capacity of the model to reproduce observations whereas the second test showed a decrease of the soil carbon stock overestimation, especially at the surface and an improvement of the estimates of the carbon age. This assumes that we should focus more on vertical variation of soil parameters as a function of depth, mainly for diffusion, in order to upgrade the representation of global carbon cycle in LSMs, thereby helping to improve predictions of the future response of soil organic carbon to global warming.


2017 ◽  
Author(s):  
Sibo Zhang ◽  
Jean-Christophe Calvet ◽  
José Darrozes ◽  
Nicolas Roussel ◽  
Frédéric Frappart ◽  
...  

Abstract. This work aims to assess the estimation of surface volumetric soil moisture (VSM) using the Global Navigation Satellite System Interferometric Reflectometry (GNSS-IR) technique. Year-round observations were acquired from a grassland site in southwestern France using an antenna consecutively placed at two contrasting heights above the ground surface (3.3 or 29.4 m). The VSM retrievals are compared with two independent reference datasets: in situ observations of soil moisture, and numerical simulations of soil moisture and vegetation biomass from the ISBA (Interactions between Soil, Biosphere and Atmosphere) land surface model. Scaled VSM estimates can be retrieved throughout the year removing vegetation effects by the separation of growth and senescence periods and by the filtering of the GNSS-IR observations that are most affected by vegetation. Antenna height has no significant impact on the quality of VSM estimates. Comparisons between the VSM GNSS-IR retrievals and the in situ VSM observations at a depth of 5 cm show a good agreement (R2 = 0.86 and RMSE = 0.04 m3 m−3). It is shown that the signal is sensitive to the grass litter water content and that this effect triggers differences between VSM retrievals and in situ VSM observations at depths of 1 cm and 5 cm, especially during light rainfall events.


Sign in / Sign up

Export Citation Format

Share Document