scholarly journals On the relationship between acetone and carbon monoxide in different air masses

2003 ◽  
Vol 3 (5) ◽  
pp. 1709-1723 ◽  
Author(s):  
M. de Reus ◽  
H. Fischer ◽  
F. Arnold ◽  
J. de Gouw ◽  
R. Holzinger ◽  
...  

Abstract. Carbon monoxide and acetone measurements are presented for five aircraft measurement campaigns at mid-latitudes, polar and tropical regions in the northern hemisphere. Throughout all campaigns, free tropospheric air masses, which were influenced by anthropogenic emissions, showed a similar linear relation between acetone and CO, with a slope of 21-25 pptv acetone/ppbv CO. Measurements in the anthropogenically influenced marine boundary layer revealed a slope of 13-16 pptv acetone/ppbv CO. The different slopes observed in the marine boundary layer and the free troposphere indicate that acetone is emitted by the ocean in relatively clean air masses and taken up by the ocean in polluted air masses. In the lowermost stratosphere, a good correlation between acetone and CO was observed as well, however, with a much smaller slope (~5 pptv acetone/ppbv CO) compared to the troposphere. This is caused by the longer photochemical lifetime of CO compared to acetone in the lower stratosphere, due to the increasing photolytic loss of acetone and the decreasing OH concentration with altitude. No significant correlation between acetone and CO was observed over the tropical rain forest due to the large direct and indirect biogenic emissions of acetone. The common slopes of the linear acetone-CO relation in various layers of the atmosphere, during five field experiments, makes them useful for model calculations. Often a single observation of the acetone-CO correlation, determined from stratospheric measurements, has been used in box model applications. This study shows that different slopes have to be considered for marine boundary layer, free tropospheric and stratospheric air masses, and that the acetone-CO relation cannot be used for air masses which are strongly influenced by biogenic emissions.

2003 ◽  
Vol 3 (1) ◽  
pp. 1017-1049
Author(s):  
M. de Reus ◽  
H. Fischer ◽  
F. Arnold ◽  
J. de Gouw ◽  
R. Holzinger ◽  
...  

Abstract. Carbon monoxide and acetone measurements are presented for five aircraft measurement campaigns at mid-latitudes, polar and tropical regions in the northern hemisphere. Throughout all campaigns, free tropospheric air masses, which were influenced by anthropogenic emissions, showed a similar linear relation between CO and acetone, with a slope of 21–25 pptv acetone/ppbv CO. Measurements in the anthropogenically influenced marine boundary layer revealed a slope of 13–16 pptv acetone/ppbv CO. The different slopes observed in the marine boundary layer and the free troposphere indicate that acetone is emitted by the ocean in relatively clean air masses and taken up by the ocean in polluted air masses. In the lowermost stratosphere, a good correlation between CO and acetone was observed as well, however, with a much smaller slope (~5 pptv acetone/ppbv CO) compared to the troposphere. This is caused by the longer photochemical lifetime of CO compared to acetone in the lower stratosphere, due to the increasing photolytic loss of acetone and the decreasing OH concentration with altitude. No significant correlation between CO and acetone was observed over the tropical rain forest due to the large direct and indirect biogenic emissions of acetone. The common slopes of the linear acetone-CO relation in various layers of the atmosphere, during five field experiments, makes them useful for model calculations. Often a single observation of the CO-acetone correlation, determined from stratospheric measurements, has been used in box model applications. This study shows that different slopes have to be considered for marine boundary layer, free tropospheric and stratospheric air masses, and that the CO-acetone relation cannot be used for air masses which are strongly influenced by biogenic emissions.


2003 ◽  
Vol 3 (3) ◽  
pp. 2963-3050 ◽  
Author(s):  
R. Sander ◽  
W. C. Keene ◽  
A. A. P. Pszenny ◽  
R. Arimoto ◽  
G. P. Ayers ◽  
...  

Abstract. The cycling of inorganic bromine in the marine boundary layer (mbl) has received increased attention in recent years. Bromide, a constituent of sea water, is injected into the atmosphere in association with sea-salt aerosol by breaking waves on the ocean surface. Measurements reveal that supermicrometer sea-salt aerosol is depleted in bromine by about 50% relative to conservative tracers, whereas marine submicrometer aerosol is often enriched in bromine. Model calculations, laboratory studies, and field observations strongly suggest that these depletions reflect the chemical transformation of particulate bromide to reactive inorganic gases that influence the processing of ozone and other important constituents of marine air. However, currently available techniques cannot reliably quantify many \\chem{Br}-containing compounds at ambient concentrations and, consequently, our understanding of inorganic Br cycling over the oceans and its global significance are uncertain. To provide a more coherent framework for future research, we have reviewed measurements in marine aerosol, the gas phase, and in rain. We also summarize sources and sinks, as well as model and laboratory studies of chemical transformations. The focus is on inorganic bromine over the open oceans, excluding the polar regions. The generation of sea-salt aerosol at the ocean surface is the major tropospheric source producing about 6.2 Tg/a of bromide. The transport of  Br from continents (as mineral aerosol, and as products from biomass-burning and fossil-fuel combustion) can be of local importance. Transport of degradation products of long-lived Br-containing compounds from the stratosphere and other sources contribute lesser amounts. Available evidence suggests that, following aerosol acidification, sea-salt bromide reacts to form Br2 and BrCl that volatilize to the gas phase and photolyze in daylight to produce atomic Br and Cl. Subsequent transformations can destroy tropospheric ozone, oxidize dimethylsulfide (DMS) and hydrocarbons in the gas phase and S(IV) in aerosol solutions, and thereby potentially influence climate. The diurnal cycle of gas-phase \\Br and the corresponding particulate Br deficits are correlated. Higher values of Br in the gas phase during daytime are consistent with expectations based on photochemistry. Mechanisms that explain the widely reported accumulation of particulate Br in submicrometer aerosols are not yet understood. We expect that the importance of inorganic Br cycling will vary in the future as a function of both increasing acidification of the atmosphere (through anthropogenic emissions) and climate changes. The latter affects bromine cycling via meteorological factors including global wind fields (and the associated production of sea-salt aerosol), temperature, and relative humidity.


2020 ◽  
Vol 20 (6) ◽  
pp. 3415-3438 ◽  
Author(s):  
Hendrik Andersen ◽  
Jan Cermak ◽  
Julia Fuchs ◽  
Peter Knippertz ◽  
Marco Gaetani ◽  
...  

Abstract. Fog is a defining characteristic of the climate of the Namib Desert, and its water and nutrient input are important for local ecosystems. In part due to sparse observation data, the local mechanisms that lead to fog occurrence in the Namib are not yet fully understood, and to date, potential synoptic-scale controls have not been investigated. In this study, a recently established 14-year data set of satellite observations of fog and low clouds in the central Namib is analyzed in conjunction with reanalysis data in order to identify synoptic-scale patterns associated with fog and low-cloud variability in the central Namib during two seasons with different spatial fog occurrence patterns. It is found that during both seasons, mean sea level pressure and geopotential height at 500 hPa differ markedly between fog/low-cloud and clear days, with patterns indicating the presence of synoptic-scale disturbances on fog and low-cloud days. These regularly occurring disturbances increase the probability of fog and low-cloud occurrence in the central Namib in two main ways: (1) an anomalously dry free troposphere in the coastal region of the Namib leads to stronger longwave cooling of the marine boundary layer, increasing low-cloud cover, especially over the ocean where the anomaly is strongest; (2) local wind systems are modulated, leading to an onshore anomaly of marine boundary-layer air masses. This is consistent with air mass back trajectories and a principal component analysis of spatial wind patterns that point to advected marine boundary-layer air masses on fog and low-cloud days, whereas subsiding continental air masses dominate on clear days. Large-scale free-tropospheric moisture transport into southern Africa seems to be a key factor modulating the onshore advection of marine boundary-layer air masses during April, May, and June, as the associated increase in greenhouse gas warming and thus surface heating are observed to contribute to a continental heat low anomaly. A statistical model is trained to discriminate between fog/low-cloud and clear days based on information on large-scale dynamics. The model accurately predicts fog and low-cloud days, illustrating the importance of large-scale pressure modulation and advective processes. It can be concluded that regional fog in the Namib is predominantly of an advective nature and that fog and low-cloud cover is effectively maintained by increased cloud-top radiative cooling. Seasonally different manifestations of synoptic-scale disturbances act to modify its day-to-day variability and the balance of mechanisms leading to its formation and maintenance. The results are the basis for a new conceptual model of the synoptic-scale mechanisms that control fog and low-cloud variability in the Namib Desert and will guide future studies of coastal fog regimes.


2008 ◽  
Vol 8 (16) ◽  
pp. 4711-4728 ◽  
Author(s):  
S. R. Zorn ◽  
F. Drewnick ◽  
M. Schott ◽  
T. Hoffmann ◽  
S. Borrmann

Abstract. Measurements of the submicron fraction of the atmospheric aerosol in the marine boundary layer were performed from January to March 2007 (Southern Hemisphere summer) onboard the French research vessel Marion Dufresne in the Southern Atlantic and Indian Ocean (20° S–60° S, 70° W–60° E). We used an Aerodyne High-Resolution-Time-of-Flight AMS to characterize the chemical composition and to measure species-resolved size distributions of non-refractory aerosol components in the submicron range. Within the "standard" AMS compounds (ammonium, chloride, nitrate, sulfate, organics) "sulfate" is the dominant species in the marine boundary layer with concentrations ranging between 50 ng m−3 and 3 μg m−3. Furthermore, what is seen as "sulfate" by the AMS is likely comprised mostly of sulfuric acid. Another sulfur containing species that is produced in marine environments is methanesulfonic acid (MSA). There have been previously measurements of MSA using an Aerodyne AMS. However, due to the use of an instrument equipped with a quadrupole detector with unit mass resolution it was not possible to physically separate MSA from other contributions to the same m/z. In order to identify MSA within the HR-ToF-AMS raw data and to extract mass concentrations for MSA from the field measurements the standard high-resolution MSA fragmentation patterns for the measurement conditions during the ship campaign (e.g. vaporizer temperature) needed to be determined. To identify characteristic air masses and their source regions backwards trajectories were used and averaged concentrations for AMS standard compounds were calculated for each air mass type. Sulfate mass size distributions were measured for these periods showing a distinct difference between oceanic air masses and those from African outflow. While the peak in the mass distribution was roughly at 250 nm (vacuum aerodynamic diameter) in marine air masses, it was shifted to 470 nm in African outflow air. Correlations between the mass concentrations of sulfate, organics and MSA show a narrow correlation for MSA with sulfate/sulfuric acid coming from the ocean, but not with continental sulfate.


2010 ◽  
Vol 10 (21) ◽  
pp. 10223-10236 ◽  
Author(s):  
J. B. Gilman ◽  
J. F. Burkhart ◽  
B. M. Lerner ◽  
E. J. Williams ◽  
W. C. Kuster ◽  
...  

Abstract. The influence of halogen oxidation on the variabilities of ozone (O3) and volatile organic compounds (VOCs) within the Arctic and sub-Arctic atmospheric boundary layer was investigated using field measurements from multiple campaigns conducted in March and April 2008 as part of the POLARCAT project. For the ship-based measurements, a high degree of correlation (r = 0.98 for 544 data points collected north of 68° N) was observed between the acetylene to benzene ratio, used as a marker for chlorine and bromine oxidation, and O3 signifying the vast influence of halogen oxidation throughout the ice-free regions of the North Atlantic. Concurrent airborne and ground-based measurements in the Alaskan Arctic substantiated this correlation and were used to demonstrate that halogen oxidation influenced O3 variability throughout the Arctic boundary layer during these springtime studies. Measurements aboard the R/V Knorr in the North Atlantic and Arctic Oceans provided a unique view of the transport of O3-poor air masses from the Arctic Basin to latitudes as far south as 52° N. FLEXPART, a Lagrangian transport model, was used to quantitatively determine the exposure of air masses encountered by the ship to first-year ice (FYI), multi-year ice (MYI), and total ICE (FYI+MYI). O3 anti-correlated with the modeled total ICE tracer (r = −0.86) indicating that up to 73% of the O3 variability measured in the Arctic marine boundary layer could be related to sea ice exposure.


2019 ◽  
Author(s):  
Hendrik Andersen ◽  
Jan Cermak ◽  
Julia Fuchs ◽  
Peter Knippertz ◽  
Marco Gaetani ◽  
...  

Abstract. Fog is a defining characteristic of the climate of the Namib Desert and its water and nutrient input are important for local ecosystems. In part due to sparse observation data, the local mechanisms that lead to fog occurrence in the Namib are not yet fully understood, and to date, potential synoptic-scale controls have not been investigated. In this study, a recently established 14-year data set of satellite observations of fog and low clouds in the central Namib is analyzed in conjunction with reanalysis data to identify typical synoptic-scale conditions associated with fog and low-cloud occurrence in the central Namib during two seasons that characterize seasonal fog variability. It is found that during both seasons, mean sea level pressure and geopotential height at 500 hPa differ significantly between fog/low-cloud and clear days, with patterns indicating seasonally different synoptic-scale disturbances on fog and low-cloud days: cut-off lows during September, October, and November, and breaking Rossby waves during April, May, and June. These regularly occurring disturbances increase the probability of fog and low-cloud occurrence in the central Namib in two main ways: 1) an anomalously dry free troposphere in the coastal region of the Namib leads to stronger longwave cooling, especially over the ocean, facilitating low-cloud formation, and 2) local wind systems are modulated, leading to an onshore anomaly of marine boundary-layer air masses. This is consistent with air mass backtrajectories and a principal component analysis of spatial wind patterns that point to advected marine boundary- layer air masses on fog and low-cloud days, whereas subsiding continental air masses dominate on clear days. Large-scale free-tropospheric moisture transport into southern Africa seems to be a key factor modulating the onshore advection of marine boundary-layer air masses during April, May, and June, as the associated increase in greenhouse gas warming and thus surface heating is observed to contribute to a continental heat low anomaly. A statistical model is trained to discriminate between fog/low-cloud and clear days based on large-scale mean sea level pressure fields. The model accurately predicts fog and low-cloud days, illustrating the importance of large-scale pressure modulation and advective processes. It can be concluded that Namib-region fog is predominantly of advective nature, but also facilitated by increased radiative cooling. Seasonally different manifestations of synoptic-scale disturbances act to modify its day-to-day variability and the balance of mechanisms leading to its formation. The results are the basis for a new conceptual model on the synoptic-scale mechanisms that control fog and low clouds in the Namib Desert, and will guide future studies of coastal fog regimes.


2004 ◽  
Vol 4 (1) ◽  
pp. 19-34 ◽  
Author(s):  
J. B. Burkholder ◽  
J. Curtius ◽  
A. R. Ravishankara ◽  
E. R. Lovejoy

Abstract. Laboratory experimental results of iodine oxide nucleation are presented. Nucleation was induced following UV photolysis of CF3I or CH2I2 in the presence of excess ozone. Measurements were performed in a 70 L Teflon reactor with new particles detected using an Ultrafine Condensation Particle Counter, UCPC. The experimental results are interpreted using a coupled chemical - aerosol model to derive model parameters assuming single component homogeneous nucleation of OIO. The aerosol model results have been applied in an atmospheric box-model to interpret the possible implications of iodine oxide nucleation in the marine boundary layer. The model calculations demonstrate that IO and OIO concentrations reported in recent field measurements using long path absorption (Allan et al., 2000, 2001) are not sufficient to account for significant aerosol production either in the coastal or open ocean marine boundary layer using the mechanism presented. We demonstrate that inhomogeneous sources of iodine oxides, i.e. "hot" spots with elevated iodine species emissions, could account for the aerosol production bursts observed in the coastal region near Mace Head, Ireland.


2003 ◽  
Vol 3 (5) ◽  
pp. 4943-4988 ◽  
Author(s):  
J. B. Burkholder ◽  
J. Curtius ◽  
A. R. Ravishankara ◽  
E. R. Lovejoy

Abstract. Laboratory experimental results of iodine oxide nucleation are presented. Nucleation was induced following UV photolysis of CF3I or CH2I2 in the presence of excess ozone. Measurements were performed in a 70 L Teflon reactor with new particles detected using an Ultrafine Condensation Particle Counter, UCPC. The experimental results are interpreted using a coupled chemical – aerosol model to derive model parameters assuming single component homogeneous nucleation of OIO. The aerosol model results have been applied in an atmospheric box-model to interpret the possible implications of iodine oxide nucleation in the marine boundary layer. The model calculations demonstrate that IO and OIO concentrations reported in recent field measurements (Allan et al., 2000, 2001) are not sufficient to account for significant aerosol production either in the coastal or open ocean marine boundary layer using the mechanism presented. We demonstrate that inhomogeneous sources of iodine oxides, i.e. "hot" spots with elevated iodine species emissions, could account for the aerosol production bursts observed in the coastal region near Mace Head, Ireland.


2019 ◽  
Vol 59 (5) ◽  
pp. 771-776
Author(s):  
V. P. Shevchenko ◽  
V. M. Kopeikin ◽  
A. N. Novigatsky ◽  
G. V. Malafeev

The paper presents the results of a study of the concentrations of black carbon in the marine boundary layer over the Baltic and North Seas, the North Atlantic, the Norwegian, the Barents, the Kara and the Laptev seas from June 30 to September 29, 2017 in the 68th and 69th voyages of research vessel "Akademik Mstislav Keldysh". Black carbon has a significant impact on climate change and the degree of pollution of the Arctic. Black carbon is formed as a result of incomplete combustion of fossil fuels (primarily coal, oil) and biomass or biofuel. It consists of submicron particles and their aggregates and can be transported a great distance from the source. Samples were taken by pumping air for 46 hours through quartz filters Hahnemule at an altitude of 10 m above sea level in a headwind to prevent smoke of the vessel from entering the filters. Subsequently, the black carbon content was determined in the laboratory by the aetalometric method. The backward trajectories of the air mass transfer and the black carbon particles transported by them to the sampling points were calculated using the HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model at http://www.arl.noaa.gov/ready.html. The conducted studies show low values of black carbon concentrations (50 ng/m3) along the expedition route when air masses came from the background areas of the North Atlantic and the Arctic. High concentrations of black carbon (100200 ng/m3 and higher) are characteristic for areas with active navigation (the South-Eastern Baltic, the North Sea) and near ports (eg Reykjavik), as well as for incoming air masses from the industrialized regions of Europe to South-Eastern Baltic and from areas of oil and gas fields where associated gas is flared (the North, the Norwegian and the Kara seas).


2014 ◽  
Vol 14 (8) ◽  
pp. 11447-11491 ◽  
Author(s):  
J. C. Schroder ◽  
S. J. Hanna ◽  
R. L. Modini ◽  
A. L. Corrigan ◽  
A. M. Macdonald ◽  
...  

Abstract. Size resolved observations of aerosol particles (including black carbon particles) and cloud residuals were studied at a marine boundary layer site (251 m a.m.s.l.) in La Jolla, CA during 2012. A counterflow virtual impactor was used to sample cloud residuals while a total inlet was used to sample both cloud residuals and interstitial particles. Two cloud events totaling ten hours of in-cloud sampling were analyzed. Since the CVI only sampled cloud droplets larger than ≈11 μm, less than 100% of the cloud droplets were sampled during the two cloud events (≈38% of the cloud droplets for the first cloud event and ≈24% of the cloud droplets for the second cloud were sampled). Back trajectories showed that air masses for both cloud events spent at least 96 h over the Pacific Ocean and traveled near, or over populated regions just before sampling. Based on bulk aerosol particle concentrations measured from the total inlet the two air masses sampled were classified as polluted marine air, a classification that was consistent with back trajectory analysis and the mass concentrations of refractory black carbon (rBC) measured from the total inlet. The activated fraction of rBC, estimated from the measurements, ranged from 0.01 to 0.1 for core diameters ranging from 70 to 220 nm. Since the fraction of cloud droplets sampled by the CVI was less than 100%, the measured activated fractions of rBC should be considered as lower limits to the total fraction of rBC activated during the two cloud events. Size distributions of rBC sampled from the residual inlet show that sub-100 nm rBC cores were incorporated into the droplets in both clouds. The coating analysis shows that the rBC cores had average coating thicknesses of 75 nm for core diameters of 70 nm and 29 nm for core diameters of 220 nm. The presence of sub-100 nm rBC cores in the cloud residuals is consistent with kappa-Köhler theory and the measured coating thicknesses of the rBC cores.


Sign in / Sign up

Export Citation Format

Share Document