scholarly journals Detection of organic compound signatures in infra-red, limb emission spectra observed by the MIPAS-B2 balloon instrument

2007 ◽  
Vol 7 (6) ◽  
pp. 1599-1613 ◽  
Author(s):  
J. J. Remedios ◽  
G. Allen ◽  
A. M. Waterfall ◽  
H. Oelhaf ◽  
A. Kleinert ◽  
...  

Abstract. Organic compounds play a central role in troposphere chemistry and increasingly are a viable target for remote sensing observations. In this paper, infra-red spectral features of three organic compounds are investigated in thermal emission spectra recorded on a flight on 8 May 1998 near Aire sur l'Adour by a balloon-borne instrument, MIPAS-B2, operating at high spectral resolution. It is demonstrated, for the first time, that PAN and acetone can be detected in infra-red remote sensing spectra of the upper troposphere; detection results are presented at tangent altitudes of 10.4 km and 7.5 km (not acetone). In addition, the results provide the first observation of spectral features of formic acid in thermal emission, as opposed to solar occultation, and confirm that concentrations of this gas are measurable in the mid-latitude upper troposphere, given accurate spectroscopic data. For PAN, two bands are observed centred at 794 cm−1 and 1163 cm−1. For acetone and formic acid, one band has been detected for each so far with band centres at 1218 cm−1 and 1105 cm−1 respectively. Mixing ratios inferred at 10.4 km tangent altitude are 180 pptv and 530 pptv for PAN and acetone respectively, and 200 pptv for formic acid with HITRAN 2000 spectroscopy. Accuracies are on the order of 15 to 40%. The detection technique applied here is verified by examining weak but known signatures of CFC-12 and HCFC-22 in the same spectral regions as those of the organic compounds, with results confirming the quality of both the instrument and the radiative transfer model. The results suggest the possibility of global sensing of the organic compounds studied here which would be a major step forward in verifying and interpreting global tropospheric model calculations.

2006 ◽  
Vol 6 (5) ◽  
pp. 10021-10061 ◽  
Author(s):  
J. J. Remedios ◽  
G. Allen ◽  
A. M. Waterfall ◽  
H. Oelhaf ◽  
A. Kleinert

Abstract. Organic compounds play a central role in troposphere chemistry and increasingly are a viable target for remote sensing observations. In this paper, infra-red spectral features of three organic compounds are investigated in thermal emission spectra recorded by a balloon-borne instrument, MIPAS-B2, operating at high spectral resolution. It is demonstrated, for the first time, that PAN and acetone can be detected in infra-red remote sensing spectra of the upper troposphere; detection results are presented at tangent altitudes of 10.4 km and 7.5 km (not acetone). In addition, the results provide the first observation of spectral features of formic acid in thermal emission, as opposed to solar occultation, and confirm that concentrations of this gas are likely to be measurable in the free troposphere, given accurate spectroscopic data. For PAN, two bands are observed centred at 794 cm−1 and 1163 cm−1. For acetone and formic acid, one band has been detected for each so far with band centres at 1218 cm−1 and 1105 cm−1 respectively. Mixing ratios inferred at 10.4 km tangent altitude are 180 pptv and 530 pptv for PAN and acetone respectively, and 200 pptv for formic acid with HITRAN 2000 spectroscopy. Accuracies are on the order of 30 to 50%. The detection technique applied here is verified by examining weak but known signatures of CFC-12 and HCFC-22 in the same spectral regions as those of the organic compounds, with results confirming the quality of both the instrument and the radiative transfer model. The results suggest the possibility of global sensing of the organic compounds studied here which would be a major step forward in verifying and interpreting global tropospheric model calculations.


1971 ◽  
Vol 40 ◽  
pp. 44-47
Author(s):  
R. A. Hanel ◽  
V. G. Kunde ◽  
T. Meilleur ◽  
G. Stambach

The thermal emission spectra of Venus, Mars, Jupiter, and the moon were observed at the coude focus of the McDonald Observatory 107-inch telescope in the 400–1400 cm−1 spectral range with spectral resolutions of 0.3–0.7 cm−1. A preliminary interpretation of the Venus/lunar ratio spectrum allows identification of four upper state CO2 bands in the Venusian atmosphere at 791, 828, 865, and 961 cm−1 and confirms previous observations of the broad absorption-like depression around 890 cm−1. The rotational structure of the 791 and 961 cm−1 bands is well developed at this spectral resolution.


The design and construction of a balloon-borne instrument for remote-sensing of stratospheric composition is described. Thermal emission from the constituents is detected and the spectral selectivity of the instrument is tailored to a specific gas by the use of a cell of the same gas in the optical path of the radiometer. The pressure of the gas in the cell is cycled and the resultant transmission function is shown to be highly selective to radiation from the same gas in the atmosphere. The first flight of the instrument and the retrieval of a water vapour profile in the range 15-40 km is described.


2016 ◽  
Vol 9 (9) ◽  
pp. 4399-4423 ◽  
Author(s):  
Sabine Griessbach ◽  
Lars Hoffmann ◽  
Reinhold Spang ◽  
Marc von Hobe ◽  
Rolf Müller ◽  
...  

Abstract. Altitude-resolved aerosol detection in the upper troposphere and lower stratosphere (UTLS) is a challenging task for remote sensing instruments. Infrared limb emission measurements provide vertically resolved global measurements at day- and nighttime in the UTLS. For high-spectral-resolution infrared limb instruments we present here a new method to detect aerosol and separate between ice and non-ice particles. The method is based on an improved aerosol–cloud index that identifies infrared limb emission spectra affected by non-ice aerosol or ice clouds. For the discrimination between non-ice aerosol and ice clouds we employed brightness temperature difference correlations. The discrimination thresholds for this method were derived from radiative transfer simulations (including scattering) and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS)/Envisat measurements obtained in 2011. We demonstrate the value of this approach for observations of volcanic ash and sulfate aerosol originating from the Grímsvötn (Iceland, 64° N), Puyehue–Cordón Caulle (Chile, 40° S), and Nabro (Eritrea, 13° N) eruptions in May and June 2011 by comparing the MIPAS volcanic aerosol detections with Atmospheric Infrared Sounder (AIRS) volcanic ash and SO2 measurements.


2021 ◽  
Vol 13 (2) ◽  
pp. 292
Author(s):  
Megan Seeley ◽  
Gregory P. Asner

As humans continue to alter Earth systems, conservationists look to remote sensing to monitor, inventory, and understand ecosystems and ecosystem processes at large spatial scales. Multispectral remote sensing data are commonly integrated into conservation decision-making frameworks, yet imaging spectroscopy, or hyperspectral remote sensing, is underutilized in conservation. The high spectral resolution of imaging spectrometers captures the chemistry of Earth surfaces, whereas multispectral satellites indirectly represent such surfaces through band ratios. Here, we present case studies wherein imaging spectroscopy was used to inform and improve conservation decision-making and discuss potential future applications. These case studies include a broad array of conservation areas, including forest, dryland, and marine ecosystems, as well as urban applications and methane monitoring. Imaging spectroscopy technology is rapidly developing, especially with regard to satellite-based spectrometers. Improving on and expanding existing applications of imaging spectroscopy to conservation, developing imaging spectroscopy data products for use by other researchers and decision-makers, and pioneering novel uses of imaging spectroscopy will greatly expand the toolset for conservation decision-makers.


1926 ◽  
Vol 27 (3) ◽  
pp. 298-313 ◽  
Author(s):  
Joseph W. Ellis

2021 ◽  
Author(s):  
Lorenzo Pino ◽  
Matteo Brogi ◽  
Jean-Michel Désert ◽  
Emily Rauscher

<p>Ultra-hot Jupiters (UHJs; T<sub>eq</sub> ≥ 2500 K) are the hottest gaseous giants known. They emerged as ideal laboratories to test theories of atmospheric structure and its link to planet formation. Indeed, because of their high temperatures, (1) they likely host atmospheres in chemical equilibrium and (2) clouds do not form in their day-side. Their continuum, which can be measured with space-facilities, can be mostly attributed to H- opacity, an indicator of metallicity. From the ground, the high spectral resolution emission spectra of UHJs contains thousands of lines of refractory (Fe, Ti, TiO, …) and volatile species (OH, CO, …), whose combined atmospheric abundances could track planet formation history in a unique way. In this talk, we take a deeper look to the optical emission spectrum of KELT-9b covering planetary phases 0.25 - 0.75 (i.e. between secondary eclipse and quadrature), and search for the effect of atmospheric dynamics and three-dimensionality of the planet atmosphere on the resolved line profiles, in the context of a consolidated statistical framework. We discuss the suitability of the traditionally adopted 1D models to interprete phase-resolved observations of ultra-hot Jupiters, and the potential of this kind of observations to probe their 3D atmospheric structure and dynamics. Ultimately, understanding which factors affect the line-shape in UHJs will also lead to more accurate and more precise abundance measurements, opening a new window on exoplanet formation and evolution.</p>


Sign in / Sign up

Export Citation Format

Share Document