scholarly journals A new transport mechanism of biomass burning from Indochina as identified by modeling studies

2009 ◽  
Vol 9 (20) ◽  
pp. 7901-7911 ◽  
Author(s):  
C.-Y. Lin ◽  
H.-m. Hsu ◽  
Y. H. Lee ◽  
C. H. Kuo ◽  
Y.-F. Sheng ◽  
...  

Abstract. Biomass burning in the Indochina Peninsula (Indochina) is one of the important ozone sources in the low troposphere over East Asia in springtime. Moderate Resolution Imaging Spectroradiometer (MODIS) data show that 20 000 or more active fire detections occurred annually in spring only from 2000 to 2007. In our tracer modeling study, we identify a new mechanism transporting the tracer over Indochina that is significantly different from the vertical transport mechanism over the equatorial areas such as Indonesia and Malaysia. Simulation results demonstrate that the leeside troughs over Indochina play a dominant role in the uplift of the tracer below 3 km, and that the strong westerlies prevailing above 3 km transport the tracer. These fundamental mechanisms have a major impact on the air quality downwind from Indochina over East Asia. The climatological importance of such a leeside trough is also discussed.

2009 ◽  
Vol 9 (3) ◽  
pp. 13155-13176
Author(s):  
C.-Y. Lin ◽  
H. M. Hsu ◽  
Y. H. Lee ◽  
C. H. Kuo ◽  
Y.-F. Sheng ◽  
...  

Abstract. Biomass burning in the Indochina Peninsula (Indochina) is one of the important ozone sources in the low troposphere over East Asia in springtime. MODIS data showed that nearly 20 000 fires or more occurred annually in spring only from 2000 to 2007. In our tracer modeling study, we identified a new mechanism transporting the tracer over Indochina that is significantly different from the vertical transport mechanism over the areas around the equator such as Indonesia and Malaysia. Simulation results demonstrate that the leeside trough over Indochina played a dominant role in the uplift of the tracer below 3 km, and that the strong westerlies prevailed above 3 km to transport the tracer. They provided the fundamental mechanisms a major impact on the air quality downwind from Indochina over East Asia. And the climatological importance of such leeside trough is also discussed.


2014 ◽  
Vol 23 (1) ◽  
pp. 69 ◽  
Author(s):  
Xianlin Qin ◽  
Hou Yan ◽  
Zihui Zhan ◽  
Zengyuan Li

For Chinese fire cases, it was established that the active fire data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) 1-km2 spatial resolution and their subsequent analysis are more accurate and spatially precise than those obtained from the statistical fire data collected by the State Forestry Administration (SFA) of P. R. China. Most (37.5%) of the biomass burning detections from 2000 to 2011 were found in croplands, followed by broadleaf forests (21.2%). Three high-density fire regions were found during the 12-year study period: (1) Heilongjiang Province, where many large forest fires occurred in April–May and September–October; (2) Yunnan Province, where many small forest fires occurred in December–May and (3) Guangdong Province and Guangxi Autonomous Regions, where most fires occurred in croplands in November–March. The largest percentage (10.72%) of the total active fire points was in Heilongjiang Province during 2000–2011, followed by Yunnan Province (10.14%), with several fires taking place in February, April and June.


2021 ◽  
Author(s):  
Rose Marie Miller ◽  
Greg M. McFarquhar ◽  
Robert M. Rauber ◽  
Joseph R. O'Brien ◽  
Siddhant Gupta ◽  
...  

Abstract. During the three years of the ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) campaign, the NASA Orion P-3 was equipped with a 2D-Stereo (2D-S) probe that imaged particles with maximum dimension (D) ranging from 10 < D < 1280 µm. The 2D-S recorded supermicron-sized aerosol particles (SAPs) outside of clouds within biomass burning plumes during flights over the Southeast Atlantic off Africa’s coast. Numerous SAPs with 10 < D < 1520 µm were observed in 2017 and 2018 at altitudes between 1230 m and 3500 m, 1000 km from the coastline mostly between 7–11° S. No SAPs were observed in 2016 as flights were conducted further south and further from the coastline. Number concentrations of black carbon (rBC) measured by a single particle soot photometer ranged from 200 to 1200 cm−3 when SAPs were observed. Transmission electron microscopy images of submicron particulates, collected on Holey carbon grid filters, revealed particles with potassium salts, black carbon and organics while energy-dispersive X-ray spectroscopy spectra detected potassium, a tracer for biomass burning, indicating that the submicron particles originated from biomass burning in addition to black carbon. NOAA Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) three-day back trajectories show a source in northern Angola for times when large SAPs were observed. Fire Information for Resource Management System Moderate Resolution Imaging Spectroradiometer (MODIS) 6 active fire maps showed extensive biomass burning at these locations. Given the back trajectories, the high number concentrations of rBC, and the presence of elemental tracers indicative of biomass burning, it is hypothesized that the SAPs imaged by the 2D-S are examples of unburned plant material previously seen in biomass burning smoke close to the source.


2020 ◽  
Author(s):  
Chuyong Lin ◽  
Jason Cohen

&lt;p&gt;A simple variance-maximization approach, based on 19 years of weekly Moderate Resolution Imaging spectroradiometer (MOPITT) CO vertical measurements, was employed to quantify the spatial distribution of the global seasonal biomass burning region. Results demonstrate there are a few large-scale and typical biomass burning regions responsible for most of the biomass burning emissions throughout the world, with the largest of these such regions located in Amazonian South America, Western Africa, Indonesia, and Northern Southeast Asia (Eastern India, Northern Myanmar, Laos, Vietnam and Eastern Bangladesh), which are highly associated with the results of Global Fire Emission Database(GFED). The CO is primarily lofted to and spreads downwind at 800mb or 700mb with three exceptions: The Maritime Continent and South America where there is significant spread at 300mb consistent with known deep- and pyro-convection; and Southern Africa where there is significant spread at 600mb. The total mass of CO lofted into the free troposphere ranges from 46% over Central Africa to 92% over Australia.&lt;/p&gt;


2018 ◽  
Author(s):  
Sarah A. Strode ◽  
Junhua Liu ◽  
Leslie Lait ◽  
Róisín Commane ◽  
Bruce Daube ◽  
...  

Abstract. GEOS-5 forecasts and analyses show considerable skill in predicting and simulating the CO distribution and the timing of CO enhancements observed during the ATom-1 aircraft mission. Using tagged tracers for CO, we find a dominant contribution from non-biomass burning sources along the ATom transects except over the tropical Atlantic, where African biomass burning makes a large contribution to the CO concentration. One of the goals of ATom is to provide a chemical climatology over the oceans, so it is important to consider whether August 2016 was representative of typical summer conditions. Using satellite observations of 700 hPa and column CO from the Measurement of Pollution in the Troposphere (MOPITT) instrument, 215 hPa CO from the Microwave Limb Sounder (MLS), and aerosol optical thickness from the Moderate Resolution Imaging Spectroradiometer (MODIS), we find that CO concentrations and aerosol optical thickness in August 2016 were within the observed range of the satellite observations, but below the decadal median for many of the regions sampled. This suggests that the ATom-1 measurements may represent relatively clean but not exceptional conditions for lower tropospheric CO.


2016 ◽  
Vol 16 (3) ◽  
pp. 1255-1269 ◽  
Author(s):  
Q. Xiao ◽  
H. Zhang ◽  
M. Choi ◽  
S. Li ◽  
S. Kondragunta ◽  
...  

Abstract. Persistent high aerosol loadings together with extremely high population densities have raised serious air quality and public health concerns in many urban centers in East Asia. However, ground-based air quality monitoring is relatively limited in this area. Recently, satellite-retrieved Aerosol Optical Depth (AOD) at high resolution has become a powerful tool to characterize aerosol patterns in space and time. Using ground AOD observations from the Aerosol Robotic Network (AERONET) and the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia Campaign, as well as from handheld sunphotometers, we evaluated emerging aerosol products from the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (S-NPP), the Geostationary Ocean Color Imager (GOCI) aboard the Communication, Ocean, and Meteorology Satellite (COMS), and Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) (Collection 6) in East Asia in 2012 and 2013. In the case study in Beijing, when compared with AOD observations from handheld sunphotometers, 51 % of VIIRS Environmental Data Record (EDR) AOD, 37 % of GOCI AOD, 33 % of VIIRS Intermediate Product (IP) AOD, 26 % of Terra MODIS C6 3 km AOD, and 16 % of Aqua MODIS C6 3 km AOD fell within the reference expected error (EE) envelope (±0.05 ± 0.15 AOD). Comparing against AERONET AOD over the Japan–South Korea region, 64 % of EDR, 37 % of IP, 61 % of GOCI, 39 % of Terra MODIS, and 56 % of Aqua MODIS C6 3 km AOD fell within the EE. In general, satellite aerosol products performed better in tracking the day-to-day variability than tracking the spatial variability at high resolutions. The VIIRS EDR and GOCI products provided the most accurate AOD retrievals, while VIIRS IP and MODIS C6 3 km products had positive biases.


2012 ◽  
Vol 29 (10) ◽  
pp. 1481-1491
Author(s):  
Yang Liu ◽  
Ronggao Liu

Abstract The polar-orbiting satellite sensor, which can observe the entire Earth’s surface with good spatial and spectral resolution, is a potential tool for estimation of global downward shortwave radiation (DSR). However, it can only provide a couple of snapshots in one day, which should be extended to daily-integrated DSR in order to drive the ecosystem models. In this paper, the temporal and spatial uncertainties for estimating of daily-integrated DSR from instantaneous measurements of polar-orbiting satellites are evaluated using geostationary Geosynchronous Meteorological Satellite-5 (GMS-5) observations over East Asia. Those overpass times—including 1030, 1200, and 1330 local time (LT), which correspond to Terra/Moderate Resolution Imaging Spectroradiometer (MODIS), Sea-Viewing Wide Field-of-View Sensor (SeaWiFS), and Aqua/MODIS—are evaluated. The combinations of multiobservations are also assessed. The results show that the daily-integrated DSR from polar-orbiting satellite observations of 1030, 1200, and 1330 underestimate solar radiation by 2.16% (0.46 MJ m−2), 5.44% (1.16 MJ m−2), and 5.54% (1.09 MJ m−2), with an RMSE of 2.05 MJ m−2 (12.92%), 2.50 MJ m−2 (13.33%), and 2.34 MJ m−2 (13.95%) in East Asia with large spatial and seasonal variations. In general, the bias is higher in the southern than in the northern part of East Asia. It is low in January, February, and March, then increases from April and reaches the maximum in June and July, and decreases rapidly to lower than 1.0 MJ m−2 in October. The uncertainties of daily-integrated DSR could be reduced by averaging multiday observations or combining of multitime observations. These uncertainties’ distributions are important for evaluation the usability of daily-integrated DSR from polar-orbiting satellite data and probably can be used for its calibration.


2020 ◽  
Vol 12 (10) ◽  
pp. 1561
Author(s):  
Fangjun Li ◽  
Xiaoyang Zhang ◽  
Shobha Kondragunta

Biomass burning plays a key role in the interaction between the atmosphere and the biosphere. The nearly two-decade-old Moderate Resolution Imaging Spectroradiometer (MODIS) active fire product provides critical information (e.g., fire radiative power or FRP) for characterizing fires and estimating smoke emissions. Due to limitations of sensing geometry, MODIS fire detection capability degrades at off-nadir angles and the sensor misses the observation of fires occurring inside its equatorial swath gaps. This study investigates missing MODIS FRP observations using the 375 m Visible Infrared Imaging Radiometer Suite (VIIRS) active fire data across Africa where fire occurs in the majority of vegetation-covered areas and significantly contributes to global biomass-burning emissions. We first examine the FRP relationship between the two sensors on a continental scale and in grids of seven different resolutions. We find that MODIS misses a considerable number of low-intensity fires across Africa, which results in the underestimation of daily MODIS FRP by at least 42.8% compared to VIIRS FRP. The underestimation of MODIS FRP varies largely with grid size and satellite view angle. Based on comparisons of grid-level FRP from the two sensors, adjustment models are established at seven resolutions from 0.05°–0.5° for mitigating the underestimation of MODIS grid FRP. Furthermore, the investigation of the effect of equatorial swath gaps on MODIS FRP observations reveals that swath gaps could lead to the underestimation of MODIS monthly summed FRP by 12.5%. The quantitative information of missing MODIS FRP helps to improve our understanding of potential uncertainties in the MODIS FRP based applications, especially emissions estimation.


Sign in / Sign up

Export Citation Format

Share Document