scholarly journals Acetylene C<sub>2</sub>H<sub>2</sub> retrievals from MIPAS data and regions of enhanced upper tropospheric concentrations in August 2003

2010 ◽  
Vol 10 (12) ◽  
pp. 29735-29771 ◽  
Author(s):  
R. J. Parker ◽  
J. J. Remedios ◽  
D. P. Moore ◽  
V. P. Kanawade

Abstract. Acetylene (C2H2) volume mixing ratios (VMRs) have been successfully retrieved from MIPAS Level 1B radiances during August 2003. The data presented here contain most information between 300 hPa and 100 hPa based on the averaging kernels, with information also at lower altitude levels (up to 500 hPa) albeit with some influence from the 300 hPa level. In our C2H2 retrievals, data at altitude levels above 100 hPa must be treated with caution. Systematic errors are less than 10% at the upper levels but can reach higher levels at 300 hPa in the tropics due to water vapour influences. Random errors per point are less than 15% at lower pressure levels and are closer to 30% at 100 hPa. Global distributions of both the absolute C2H2 and ratios to MOPITT 150 hPa retrievals of carbon monoxide (CO) confirm some significant features for this important hydrocarbon in a characteristic summer month (August 2003), showing tight correlations regionally but globally emphasising the differences between sources and lifetimes of CO and C2H2. The ratios to CO are estimated to be accurate to approximately 10%. A strong isolation of C2H2 within the Asian monsoon anticyclone is observed, evidencing convective transport into the upper troposphere, horizontal advection within the anticyclone at 200 hPa, distinct but measurable gradients at the westward edge of the vortex and formation of a secondary dynamical feature over the Asian Pacific. The data for C2H2 strongly support evidence for a strong isolated core to the anticyclone with distinct gradients surrounding this core. Within this region, there is a relatively lower correlation of C2H2 and CO suggesting difference in injection ratios or more likely due to expected chemical processing. A second strong feature to the global distributions is observed in the enhancement and outflow of biomass burning from Africa at 200 hPa, both north-westward and eastward from 10° S. The easterly flow shows high C2H2 ratios to CO which have significantly decayed before reaching Australia. In the biomass burning regions, C2H2 and CO are relatively tightly correlated. C2H2 enhancements are observed to penetrate to lower altitudes in the African biomass outflow in this month compared to uplift observed in the Asian monsoon anticyclone region. Overall, the data show the distinctive nature of C2H2 distributions, confirm in greater detail than previously possible features of hydrocarbon enhancements in the upper troposphere and highlight the future use of MIPAS hydrocarbon data for testing model transport and OH decay regimes in the middle to upper troposphere.

2011 ◽  
Vol 11 (19) ◽  
pp. 10243-10257 ◽  
Author(s):  
R. J. Parker ◽  
J. J. Remedios ◽  
D. P. Moore ◽  
V. P. Kanawade

Abstract. Acetylene (C2H2) volume mixing ratios (VMRs) have been successfully retrieved from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) Level 1B radiances during August 2003, providing the first global map of such data and ratios to CO in the literature. The data presented here contain most information between 300 hPa and 100 hPa with systematic errors less than 10% at the upper levels. Random errors per point are less than 15% at lower levels and are closer to 30% at 100 hPa. Global distributions of the C2H2 and C2H2/CO ratio confirm significant features associated with both the Asian monsoon anticyclone and biomass burning for this important hydrocarbon in a characteristic summer month (August 2003), showing tight correlations regionally, particularly at lower to medium values, but globally emphasising the differences between sources and lifetimes of CO and C2H2. The correlations are seen to be particularly disturbed in the regions of highest C2H2 concentrations, indicating variability in the surface emissions or fast processing. A strong isolation of C2H2 within the Asian monsoon anticyclone is observed, evidencing convective transport into the upper troposphere, horizontal advection within the anticyclone at 200 hPa, distinct gradients at the westward edge of the vortex and formation of a secondary dynamical feature from the eastward extension of the anticyclone outflow over the Asian Pacific. Ratios of C2H2/CO are consistent with the evidence from the cross-sections that the C2H2 is uplifted rapidly in convection. Observations are presented of enhanced C2H2 associated with the injection from biomass burning into the upper troposphere and the outflow from Africa at 200 hPa into both the Atlantic and Indian Oceans. In the biomass burning regions, C2H2 and CO are well correlated, but the uplift is less marked and peaks at lower altitudes compared to the strong effects observed in the Asian monsoon anticyclone. Ratios of C2H2/CO clearly decay along transport pathways for the outflow, indicating photochemical ageing of the plumes. Overall, the data show the distinctive nature of C2H2 distributions, confirm in greater detail than previously possible features of hydrocarbon enhancements in the upper troposphere and highlight the future use of MIPAS hydrocarbon data for testing model transport and OH decay regimes in the middle to upper troposphere.


2020 ◽  
Author(s):  
Bettina Hottmann ◽  
Sascha Hafermann ◽  
Laura Tomsche ◽  
Daniel Marno ◽  
Monica Martinez ◽  
...  

Abstract. During the OMO (Oxidation Mechanism Observation) mission, trace gas measurements were performed onboard the HALO (High Altitude LOng range) research aircraft in summer 2015 in order to investigate the outflow of the south Asian summer monsoon and its influence on the composition of the Asian Monsoon Anticyclone (AMA) in the upper troposphere over the eastern Mediterranean and the Arabian Peninsula. This study focuses on in situ observations of hydrogen peroxide (H2O2) and organic hydroperoxides (ROOH), as well as their precursors and loss processes. Observations are compared to steady state calculations of H2O2, methyl hydroperoxide (MHP) and inferred unidentified hydroperoxide (UHP) mixing ratios. Measurements are also contrasted to simulations with the general circulation ECHAM/MESSy for Atmospheric Chemistry (EMAC) model. We observed enhanced mixing ratios of H2O2, MHP and UHP in the AMA relative to the northern hemispheric background. Highest concentrations for H2O2 and MHP were found in the southern hemisphere outside the AMA, while for UHP, highest concentrations were found within the AMA. In general, the observed concentrations are higher than steady-state calculations and EMAC simulations. Especially in the AMA, EMAC underestimates the H2O2 and ROOH mixing ratios. Longitudinal gradients indicate a pool of hydroperoxides towards the center of the AMA, most likely associated with upwind convection over India. This indicates main contributions of atmospheric transport to the local budgets of hydroperoxides along the flight track, explaining strong deviations to steady-state calculations which only accounts for local photochemistry. Deviations to EMAC simulations are most likely due to uncertainties in the scavenging efficiencies for individual hydroperoxides in deep convective transport to the upper troposphere, corroborated by a sensitivity study. It seems that the observed excess UHP is excess MHP transported to the west from an upper tropospheric source related to convection in the summer monsoon over South-East Asia.


2020 ◽  
Vol 20 (21) ◽  
pp. 12655-12673
Author(s):  
Bettina Hottmann ◽  
Sascha Hafermann ◽  
Laura Tomsche ◽  
Daniel Marno ◽  
Monica Martinez ◽  
...  

Abstract. During the OMO (Oxidation Mechanism Observation) mission, trace gas measurements were performed on board the HALO (High Altitude Long Range) research aircraft in summer 2015 in order to investigate the outflow of the South Asian summer monsoon and its influence on the composition of the Asian monsoon anticyclone (AMA) in the upper troposphere over the eastern Mediterranean and the Arabian Peninsula. This study focuses on in situ observations of hydrogen peroxide (H2O2obs) and organic hydroperoxides (ROOHobs) as well as their precursors and loss processes. Observations are compared to photostationary-state (PSS) calculations of H2O2PSS and extended by a separation of ROOHobs into methyl hydroperoxide (MHPPSS) and inferred unidentified hydroperoxide (UHPPSS) mixing ratios using PSS calculations. Measurements are also contrasted to simulations with the general circulation ECHAM–MESSy for Atmospheric Chemistry (EMAC) model. We observed enhanced mixing ratios of H2O2obs (45 %), MHPPSS (9 %), and UHPPSS (136 %) in the AMA relative to the northern hemispheric background. Highest concentrations for H2O2obs and MHPPSS of 211 and 152 ppbv, respectively, were found in the tropics outside the AMA, while for UHPPSS, with 208 pptv, highest concentrations were found within the AMA. In general, the observed concentrations are higher than steady-state calculations and EMAC simulations by a factor of 3 and 2, respectively. Especially in the AMA, EMAC underestimates the H2O2EMAC (medians: 71 pptv vs. 164 pptv) and ROOHEMAC (medians: 25 pptv vs. 278 pptv) mixing ratios. Longitudinal gradients indicate a pool of hydroperoxides towards the center of the AMA, most likely associated with upwind convection over India. This indicates main contributions of atmospheric transport to the local budgets of hydroperoxides along the flight track, explaining strong deviations from steady-state calculations which only account for local photochemistry. Underestimation of H2O2EMAC by approximately a factor of 2 in the Northern Hemisphere (NH) and the AMA and overestimation in the Southern Hemisphere (SH; factor 1.3) are most likely due to uncertainties in the scavenging efficiencies for individual hydroperoxides in deep convective transport to the upper troposphere, corroborated by a sensitivity study. It seems that the observed excess UHPPSS is excess MHP transported to the west from an upper tropospheric source related to convection in the summer monsoon over Southeast Asia.


2021 ◽  
Author(s):  
Victor Lannuque ◽  
Bastien Sauvage ◽  
Brice Barret ◽  
Hannah Clark ◽  
Gilles Athier ◽  
...  

Abstract. Between December 2005 and 2013, the In-service Aircraft for a Global Observing System (IAGOS) program produced almost daily in situ measurements of CO and O3 between Europe and southern Africa. IAGOS data combined with measurements from the IASI instrument onboard the Metop-A satellite (2008–2013) are used to characterize meridional distributions and seasonality of CO and O3 in the African upper troposphere (UT). The FLEXPART particle dispersion model and the SOFT-IO model which combines the FLEXPART model with CO emission inventories are used to explore the sources and origins of the observed transects of CO and O3. We focus our analysis on two main seasons: December to March (DJFM) and June to October (JJASO). These seasons have been defined according to the position of Intertropical Convergence Zone (ITCZ), determined using in situ measurements from IAGOS. During both seasons, the UT CO meridional transects are characterized by maximum mixing ratios located 10° from the position of the ITCZ above the dry regions inside the hemisphere of the strongest Hadley cell (132 to 165 ppb at 0–5° N in DJFM and 128 to 149 ppb at 3–7° S in JJASO), and decreasing values south- and north-ward. The O3 meridional transects are characterized by mixing ratio minima of ~ 42–54 ppb at the ITCZ (10–16° S in DJFM and 5–8° N in JJASO) framed by local maxima (~ 53–71 ppb) coincident with the wind shear zones North and South of the ITCZ. O3 gradients are strongest in the hemisphere of the strongest Hadley cell. IASI UT O3 distributions in DJFM have revealed that the maxima are a part of a crescent-shaped O3 plume above the Atlantic Ocean around the Gulf of Guinea. CO emitted at the surface is transported towards the ITCZ by the trade winds and then convectively uplifted. Once in the upper troposphere, CO enriched air masses are transported away from the ITCZ by the upper branches of the Hadley cells and accumulate within the zonal wind shear zones where the maximum CO mixing ratios are found. Anthropogenic and fires both contribute, by the same order of magnitude, to the CO budget of the African upper troposphere. Local fires have the highest contribution, drive the location of the observed UT CO maxima, and are related to the following transport pathway: CO emitted at the surface is transported towards the ITCZ by the trade winds and further convectively uplifted. Then UT CO enriched air masses are transported away from the ITCZ by the upper branches of the Hadley cells and accumulate within the zonal wind shear zones where the maxima are located. Anthropogenic CO contribution is mostly from Africa during the entire year, with a low seasonal variability, and is related to similar transport circulation than fire air masses. There is also a large contribution from Asia in JJASO related to the fast convective uplift of polluted air masses in the Asian monsoon region which are further westward transported by the tropical easterly jet (TEJ) and the Asian monsoon anticyclone (AMA). O3 minima correspond to air masses that were recently uplifted from the surface where mixing ratios are low at the ITCZ. The O3 maxima correspond to old high altitude air masses uplifted from either local or long distance area of high O3 precursor emissions (Africa and South America during all the year, South Asia mainly in JJASO), and must be created during transport by photochemistry. This analysis of meridional transects contribute to a better understanding of distributions of CO and O3 in the intertropical African upper troposphere and the processes which drive these distributions. Therefore, it provides a solid basis for comparison and improvement of models and satellite products in order to get the good O3 for the good reasons.


2017 ◽  
Vol 98 (1) ◽  
pp. 129-143 ◽  
Author(s):  
Eric J. Jensen ◽  
Leonhard Pfister ◽  
David E. Jordan ◽  
Thaopaul V. Bui ◽  
Rei Ueyama ◽  
...  

Abstract The February–March 2014 deployment of the National Aeronautics and Space Administration (NASA) Airborne Tropical Tropopause Experiment (ATTREX) provided unique in situ measurements in the western Pacific tropical tropopause layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the Convective Transport of Active Species in the Tropics (CONTRAST) and the Coordinated Airborne Studies in the Tropics (CAST) airborne campaigns based in Guam using lower-altitude aircraft (see companion articles in this issue). The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes, as well as for evaluation and improvement of global-model representations of TTL processes. The ATTREX data are publicly available online (at https://espoarchive.nasa.gov/).


2009 ◽  
Vol 9 (1) ◽  
pp. 2165-2194 ◽  
Author(s):  
A. Lupu ◽  
J. W. Kaminski ◽  
L. Neary ◽  
J. C. McConnell ◽  
K. Toyota ◽  
...  

Abstract. We investigate the spatial and temporal distribution of hydrogen cyanide (HCN) in the upper troposphere through numerical simulations and comparison with observations from a space-based instrument. To perform the simulations, we used the Global Environmental Multiscale Air Quality model (GEM-AQ), which is based on the three-dimensional global multiscale model developed by the Meteorological Service of Canada for operational weather forecasting. The model was run for the period 2004–2006 on a 1.5°×1.5° global grid with 28 hybrid vertical levels from the surface up to 10 hPa. Objective analysis data from the Canadian Meteorological Centre were used to update the meteorological fields every 24 h. Fire emission fluxes of gas species were generated by using year-specific inventories of carbon emissions with 8-day temporal resolution from the Global Fire Emission Database (GFED) version 2. The model output is compared with HCN profiles measured by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) instrument onboard the Canadian SCISAT-1 satellite. High values of up to a few ppbv are observed in the tropics in the Southern Hemisphere; the enhancement in HCN volume mixing ratios in the upper troposphere is most prominent in October. Low upper-tropospheric mixing ratios of less than 100 pptv are mostly recorded at middle and high latitudes in the Southern Hemisphere in May–July. Mixing ratios in Northern Hemisphere peak in the boreal summer. The amplitude of the seasonal variation is less pronounced than in the Southern Hemisphere. Our model results show that in the upper troposphere GEM-AQ performs well globally for all seasons, except at Northern high and middle latitudes in summer, where the model has a large negative bias, and in the tropics in winter and spring, where it exhibits large positive bias. This may reflect inaccurate emissions or possible inaccuracies in the emission profile. The model is able to explain most of the observed variability in the upper troposphere HCN field, including the interannual variations in the observed mixing ratio. The estimated average global emission equals 1.3 Tg N yr−1. The average atmospheric burden is 0.53 Tg N, and the corresponding lifetime is 4.9 months.


2011 ◽  
Vol 11 (24) ◽  
pp. 13181-13199 ◽  
Author(s):  
Q. Liang ◽  
J. M. Rodriguez ◽  
A. R. Douglass ◽  
J. H. Crawford ◽  
J. R. Olson ◽  
...  

Abstract. We use aircraft observations obtained during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission to examine the distributions and source attributions of O3 and NOy in the Arctic and sub-Arctic region. Using a number of marker tracers, we distinguish various air masses from the background troposphere and examine their contributions to NOx, O3, and O3 production in the Arctic troposphere. The background Arctic troposphere has a mean O3 of ~60 ppbv and NOx of ~25 pptv throughout spring and summer with CO decreasing from ~145 ppbv in spring to ~100 ppbv in summer. These observed mixing ratios are not notably different from the values measured during the 1988 ABLE-3A and the 2002 TOPSE field campaigns despite the significant changes in emissions and stratospheric ozone layer in the past two decades that influence Arctic tropospheric composition. Air masses associated with stratosphere-troposphere exchange are present throughout the mid and upper troposphere during spring and summer. These air masses, with mean O3 concentrations of 140–160 ppbv, are significant direct sources of O3 in the Arctic troposphere. In addition, air of stratospheric origin displays net O3 formation in the Arctic due to its sustainable, high NOx (75 pptv in spring and 110 pptv in summer) and NOy (~800 pptv in spring and ~1100 pptv in summer). The air masses influenced by the stratosphere sampled during ARCTAS-B also show conversion of HNO3 to PAN. This active production of PAN is the result of increased degradation of ethane in the stratosphere-troposphere mixed air mass to form CH3CHO, followed by subsequent formation of PAN under high NOx conditions. These findings imply that an adequate representation of stratospheric NOy input, in addition to stratospheric O3 influx, is essential to accurately simulate tropospheric Arctic O3, NOx and PAN in chemistry transport models. Plumes influenced by recent anthropogenic and biomass burning emissions observed during ARCTAS show highly elevated levels of hydrocarbons and NOy (mostly in the form of NOx and PAN), but do not contain O3 higher than that in the Arctic tropospheric background except some aged biomass burning plumes sampled during spring. Convection and/or lightning influences are negligible sources of O3 in the Arctic troposphere but can have significant impacts in the upper troposphere in the continental sub-Arctic during summer.


2017 ◽  
Vol 17 (23) ◽  
pp. 14219-14237 ◽  
Author(s):  
Ruth M. Doherty ◽  
Clara Orbe ◽  
Guang Zeng ◽  
David A. Plummer ◽  
Michael J. Prather ◽  
...  

Abstract. The impacts of climate change on tropospheric transport, diagnosed from a carbon monoxide (CO)-like tracer species emitted from global CO sources, are evaluated from an ensemble of four chemistry–climate models (CCMs) contributing to the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Model time-slice simulations for present-day and end-of-the-21st-century conditions were performed under the Representative Concentrations Pathway (RCP) climate scenario RCP 8.5. All simulations reveal a strong seasonality in transport, especially over the tropics. The highest CO-tracer mixing ratios aloft occur during boreal winter when strong vertical transport is co-located with biomass burning emission source regions. A consistent and robust decrease in future CO-tracer mixing ratios throughout most of the troposphere, especially in the tropics, and an increase around the tropopause is found across the four CCMs in both winter and summer. Decreases in CO-tracer mixing ratios in the tropical troposphere are associated with reduced convective mass fluxes in this region, which in turn may reflect a weaker Hadley cell circulation in the future climate. Increases in CO-tracer mixing ratios near the tropopause are largely attributable to a rise in tropopause height enabling lofting to higher altitudes, although a poleward shift in the mid-latitude jets may also play a minor role in the extratropical upper troposphere. An increase in CO-tracer mixing ratios also occurs near the Equator, centred over equatorial and Central Africa, extending from the surface to the mid-troposphere. This is most likely related to localised decreases in convection in the vicinity of the Intertropical Convergence Zone (ITCZ), resulting in larger CO-tracer mixing ratios over biomass burning regions and smaller mixing ratios downwind.


2011 ◽  
Vol 11 (4) ◽  
pp. 10721-10767 ◽  
Author(s):  
Q. Liang ◽  
J. M. Rodriguez ◽  
A. R. Douglass ◽  
J. H. Crawford ◽  
E. Apel ◽  
...  

Abstract. We analyze the aircraft observations obtained during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellite (ARCTAS) mission together with the GEOS-5 CO simulation to examine O3 and NOy in the Arctic and sub-Arctic region and their source attribution. Using a number of marker tracers and their probability density distributions, we distinguish various air masses from the background troposphere and examine their contribution to NOx, O3, and O3 production in the Arctic troposphere. The background Arctic troposphere has mean O3 of ~60 ppbv and NOx of ~25 pptv throughout spring and summer with CO decreases from ~145 ppbv in spring to ~100 ppbv in summer. These observed CO, NOx and O3 mixing ratios are not notably different from the values measured during the 1988 ABLE-3A and the 2002 TOPSE field campaigns despite the significant changes in the past two decades in processes that could have changed the Arctic tropospheric composition. Air masses associated with stratosphere-troposphere exchange are present throughout the mid and upper troposphere during spring and summer. These air masses with mean O3 concentration of 140–160 ppbv are the most important direct sources of O3 in the Arctic troposphere. In addition, air of stratospheric origin is the only notable driver of net O3 formation in the Arctic due to its sustainable high NOx (75 pptv in spring and 110 pptv in summer) and NOy (~800 pptv in spring and ~1100 pptv in summer) levels. The ARCTAS measurements present observational evidence suggesting significant conversion of nitrogen from HNO3 to NOx and then to PAN (a net formation of ~120 pptv PAN) in summer when air of stratospheric origin is mixed with tropospheric background during stratosphere-to-troposphere transport. These findings imply that an adequate representation of stratospheric O3 and NOy input are essential in accurately simulating O3 and NOx photochemistry as well as the atmospheric budget of PAN in tropospheric chemistry transport models of the Arctic. Anthropogenic and biomass burning pollution plumes observed during ARCTAS show highly elevated hydrocarbons and NOy (mostly in the form of NOx and PAN), but do not contribute significantly to O3 in the Arctic troposphere except in some of the aged biomass burning plumes sampled during spring. Convection and/or lightning influences are negligible sources of O3 in the Arctic troposphere but can have significant impacts in the upper troposphere in the continental sub-Arctic during summer.


2010 ◽  
Vol 10 (7) ◽  
pp. 18063-18099
Author(s):  
M. von Hobe ◽  
J.-U. Grooß ◽  
G. Günther ◽  
P. Konopka ◽  
I. Gensch ◽  
...  

Abstract. Airborne in-situ observations of ClO in the tropics were made during the TROCCINOX (Aracatuba, Brasil, February 2005) and SCOUT-O3 (Darwin, Australia, November/December 2005) field campaigns. While during most flights significant amounts of ClO (≈10–20 parts per trillion, ppt) were present only in aged stratospheric air, instances of enhanced ClO mixing ratios of up to 40 ppt – significantly exceeding those expected from gas phase chemistry – were observed in air masses of a more tropospheric character. Most of these observations concur with low temperatures or with the presence of cirrus clouds (often both), suggesting that cirrus ice particles and/or liquid aerosol at low temperatures may promote significant heterogeneous chlorine activation in the tropical upper troposphere lower stratosphere (UTLS). In two case studies, particularly high levels of ClO observed were reproduced by chemistry simulations only under the assumption that significant denoxification had occurred in the observed air. At least for one of these flights, a significant denoxification is in contrast to the observed NO levels suggesting that the coupling of chlorine and nitrogen compounds in the tropical UTLS may not be completely understood.


Sign in / Sign up

Export Citation Format

Share Document